

SOFTWARE REUSE IN
AIRBORNE SYSTEMS

An Interactive Video Teletraining Course

IVT course # 62836
Self-Study Video #25836

Developed and Presented by:
Leanna Rierson

FAA, Chief Scientific and Technical Advisor
For Aircraft Computer Software

Aircraft Certification Service
Federal Aviation Administration

October 29-30, 2003

 CONTENTS OF THIS PARTICIPANT’S GUIDE

How Do You Use This IVT Guide?

IVT Course Orientation

 What Is IVT?
 Who Is the Target Audience?
 What Is In This Guide?
 What Will You Learn?
 Who Is the Instructor?
 Self-Assessment (pre-course and post-course)

Appendices

A. Presentation Visuals
B. List of Acronyms
C. Exercises
D. Order 8110.49, Chapter 12
E. AC 20-RSC, Reusable Software Components
F. DO-178B Objective Considerations
G. Sample Data Sheet
H. Sample Acceptance Letter
I. Evaluation Form

How Do You Use This IVT Guide?

This Interactive Video Teletraining (IVT) Guide provides you with an
orientation to the IVT presentation, support materials for use during the
broadcast, and the course evaluation.
Follow these steps to complete your study:
1. Review the IVT Presentation Orientation before the broadcast, if

possible, or before you watch the self-study videotape. It provides the
purpose of the presentation, the target audience, information about the
instructor, what you will learn, and topics covered.

2. Turn to Appendix A, IVT Presentation Visuals, and refer to it during the
broadcast/videotape. You can use these visuals to take notes and follow
along when viewing the presentation/self-study video.

3. Review chapter 12 of Order 8110.49, Software Approval Guidelines (in
Appendix D), before the broadcast, if possible, or before you watch the
self-study videotape.

4. Review the Advisory Circular (AC) on reusable software components
(Appendix E) before the broadcast, if possible, or before you watch the
self-study videotape.

5. Participate in the broadcast or watch the self-stuy videotape, performing
exercises (Appendix C) and reviewing materials (Appendices D through
H), as directed.

6. Complete the IVT Presentation Evaluation Form in Appendix I and send
it to your Directorate/Division Training Manager (ATM). Your
comments are very important to us and will help to enhance the quality
of the IVT lesson.

NOTE: The IVT broadcast will be videotaped so that it may be used as a
self-study package for those who were unable to participate in the
broadcast, or for those who wish to refresh their knowledge of the content
presented. This IVT Guide may also be used with the self-study videotape.

What Is IVT?

Interactive Video Teletraining, or IVT, is instruction delivered using some
form of live, interactive television. This course originates from the
television studio at the FAA Academy in Oklahoma City. Through the IVT
broadcast facility, the instructor is able to use a variety of visuals, objects,
and media formats to support the instruction.

Participants are located at various receive sites around the country and can
see the instructor and his/her materials on television screens in their
classrooms. The participants can communicate with the instructor either
through a microphone and/or the simple-to-use Viewer Response System
keypads. During the live presentation, when a participant has a question or
the instructor asks for specific participant responses to questions, the
participant(s) can signal to the instructor using the keypad.

The collective participant responses, or the name of a specific participant
signaling a question, are immediately visible to the instructor on the console
at the broadcast site. The instructor can then respond as needed. When the
instructor calls on a specific participant to speak from a site, participants at
each of the other sites can simultaneously hear the participant who is
speaking.

Who Is the Target Audience?

Aviation safety engineers who approve airborne software.

What Is In This Guide?

This guide provides you with a framework for this course, as well as the
following appendices to be used during the course:

• Appendix A contains copies of the slides used by the instructor during
the broadcast. You can use these visuals to follow along with the
broadcast or when you watch the tape and to record notes directly on
the pages.

• Appendix B contains a list of acronyms that may be used during the
broadcast. Please reference this as needed.

• Appendix C contains exercises that will be performed by students
during the broadcast.

• Appendix D contains Chapter 12 of FAA Order 8110.49, Software
Approval Guidelines. This chapter addresses the reuse of software
life cycle data and will be discussed on day #2 of the broadcast.

• Appendix E contains draft 9.2 of the Advisory Circular (AC) 20-RSC
entitled “Reusable Software Components” that will be discussed on
day #2 of the broadcast.

• Appendices F through H contain information and examples that will
be used to help students better understand the FAA’s reuse policy and
guidance.

• Appendix I contains the IVT/Self-study Evaluation Form. Please fill
out this form after the IVT/self study course is finished. If taking the
course “live” please fax the form to 405-954-0317. If taking this
course via self-study, send the form to your Directorate/Division
Training Manager (ATM) in order to get course credit.

What Will You Learn?

At the end of the training, participants will be able to:

• Explain the industry’s motivation for pursuing software reuse.

• Describe technical and safety issues concerning software reuse.

• Explain FAA policy, guidance, and activities related to software
reuse.

• Describe keys for safe acceptance of reused.

Who Is the Instructor?

Leanna Rierson is the FAA’s Chief Scientific and Technical Advisor for
Aircraft Computer Software. She has 14 years of experience in the
computer/aviation industry. These positions include: national software
program manager of the FAA Avionics Branch (AIR-130),
avionics/electrical engineering specialist at the Wichita ACO, and software
positions with industry at NCR and Cessna Aircraft Company. Leanna
graduated summa cum laude from Wichita State University and has a
Master’s degree in Software Engineering from Rochester Institute of
Technology. Leanna has led numerous national and international software
teams. She has performed research in the area of software reuse for the past
four years.

Self-Assessment

If you are taking this course via IVT and you are logged on to a
keypad, you will be asked before and after the broadcast to
complete this self assessment, using your keypads. If you are
taking this via self-study video or do not have a keypad, please
complete manually and return with your end of course
evaluation to your directorate/division training manager
(ATM).
Rate your confidence level for each of the following statements
before and after completing the course.
1. I can describe the technical concepts that make software

reuse possible.
 a. Very b. Moderately c. Not

 Confident Confident Confident
BEFORE THE COURSE:

AFTER THE COURSE:

2. I can explain safety concerns related to software reuse.
 a. Very b. Moderately c. Not

 Confident Confident Confident
BEFORE THE COURSE:

AFTER THE COURSE:

3. I can describe the technical topics addressed in FAA
Advisory Circular on Reusable Software Components.
 a. Very b. Moderately c. Not

 Confident Confident Confident
BEFORE THE COURSE:

AFTER THE COURSE:
4. I can explain Chapter 12 of Order 8110.49, which addresses

reuse of software life cycle data.

 a. Very b. Moderately c. Not
 Confident Confident Confident

BEFORE THE COURSE:
AFTER THE COURSE:

Pre- & Post-
Course Self-
Assessment
Questions

5. I can describe keys for safe acceptance of reused software.

 a. Very b. Moderately c. Not
 Confident Confident Confident

BEFORE THE COURSE:
AFTER THE COURSE:
6. I can explain FAA activities related to software reuse.

 a. Very b. Moderately c. Not
 Confident Confident Confident

BEFORE THE COURSE:
AFTER THE COURSE:

PRESENTATION VISUALS

Appendix A

Appendix A – IVT Presentation Visuals A-1

Software Reuse in
Airborne Systems

Leanna Rierson
October 29-30, 2003

Software Reuse - 2
October 29-30, 2003

Ground Rules

• Do Not Use Company Names

• Be Positive

• Be Constructive

• Address Controversial Topics Off-
Line

Appendix A – IVT Presentation Visuals A-2

Software Reuse - 3
October 29-30, 2003

Overview of Participant’s
Guide

• Appendix A: Slides
• Appendix B: List of Acronyms
• Appendix C: Exercises
• Appendix D: Ch 12 of Order 8110.49
• Appendix E: AC 20-RSC (version 9.2)
• Appendix F: DO-178B Objective

Considerations for RSC
• Appendix G: Sample Data Sheet

Software Reuse - 4
October 29-30, 2003

Overview of Participant’s
Guide (cont)

• Appendix H: Sample Acceptance
Letter

• Appendix I: Evaluation Form

Appendix A – IVT Presentation Visuals A-3

Software Reuse - 5
October 29-30, 2003

Course Objectives

• Explain the industry’s motivation for
pursuing software reuse.

• Describe technical and safety issues
concerning software reuse.

• Explain FAA policy, guidance, and
activities related to software reuse.

• Describe keys for safe acceptance of
reused software.

Software Reuse - 6
October 29-30, 2003

Course Overview

• What is Reuse?
• Pros/Cons of Reuse
• Reuse Myths
• Why Reuse Isn’t Used Much
• 7 Concepts Relevant to Reuse
• Successful Reuse – Pulling It All

Together
• Common Certification Concerns

Regarding Reuse

Day 1:Technical Aspects of Software Reuse

Appendix A – IVT Presentation Visuals A-4

Software Reuse - 7
October 29-30, 2003

Course Overview

• Day 2: Policy & Guidance
Related to Software Reuse

Reuse of Software Life Cycle Data
(Ch 12 of Order 8110.49)
Reusable Software Components
(AC 20-RSC)
Other FAA Reuse-Related
Activities
Keys For Reuse Acceptance

Software Reuse - 8
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-5

Software Reuse - 9
October 29-30, 2003

Source: Scott Adams

GRAPHIC

Software Reuse - 10
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-6

Software Reuse - 11
October 29-30, 2003

What is Reuse?

• A hot buzzword?
• The newest silver bullet?
• Something greatly desired, but ever so

elusive?
• Real and practical?

“If you ask five programmers what reuse is,
you’ll get eight answers” (Steve Adolf)

Software Reuse - 12
October 29-30, 2003

What is Reuse? (cont)

• Software Reuse != Software Salvaging
(Adolf)
− Software reuse is software that is designed to

be reused
− Software salvaging is using software that was

not designed for reuse
• “Salvaging” seems to be the trend in the

aviation world, but applicants want to do
more “reusing”

Appendix A – IVT Presentation Visuals A-7

Software Reuse - 13
October 29-30, 2003

What is Reuse? (cont)

• A process of implementing or updating
software systems using existing software
assets. (Sodhi)
− Assets can be software components, objects,

software requirement analysis and design
models, domain architecture, database schema,
code documentation, manuals, standards, test
scenarios, and plans.

− Software reuse may occur within a software
system, across similar systems, or in widely
different systems.

Software Reuse - 14
October 29-30, 2003

What is Reuse? (cont)

• Software reuse is the process of
creating software systems from
existing software assets, rather
than building software systems
from scratch. (Krueger)

Appendix A – IVT Presentation Visuals A-8

Software Reuse - 15
October 29-30, 2003

What is Reuse? (cont)

• Goal of reuse: To use as much software
data as possible from previous
development efforts in order to reduce
time, cost, and risks associated with re-
development.

“Reuse is a bet on the future” (Williams)

Software Reuse - 16
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-9

Software Reuse - 17
October 29-30, 2003

Software Reuse - 18
October 29-30, 2003

Potential Benefits of Reuse
• Meeting business needs (addressing

the software crisis)
• Higher productivity
• Increased quality
• Quicker time to market
• Better use of resources
• Helps with system complexity issues

“Systematic reuse has the highest payback
of any technology since software began.” (Williams)

Appendix A – IVT Presentation Visuals A-10

Software Reuse - 19
October 29-30, 2003

Potential Risks of Reuse
• It requires more upfront

investment
• It is a bit of a gamble on the future
• It can end up costing more, if not

done properly
• It can induce errors, if not done

properly
• It must be used cautiously in

safety-critical domains

Software Reuse - 20
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-11

Software Reuse - 21
October 29-30, 2003

Reuse Myths

• Reuse is quick, easy, simple, & free.
• Buying components means no building.
• Components equal reuse.
• Reuse is just code.
• Maintenance is not building, therefore reuse

does not apply.
• Increase productivity means loss of jobs.
• Reuse means everyone must do the same

thing.

Software Reuse - 22
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-12

Software Reuse - 23
October 29-30, 2003

Why Reuse Has Not Been
Utilized Much

• It isn’t taught in schools
• We have the “not invented here” attitude
• Cost is believed to be prohibitive
• Time constraints
• Culture
• Lack of experience
• Lack of tools
• Not understanding what reuse really is

Software Reuse - 24
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-13

Software Reuse - 25
October 29-30, 2003

Software Reuse - 26
October 29-30, 2003

7 Concepts Relevant to Reuse

1. Planning for Reuse
2. Domain Engineering
3. Software Components
4. Object-Oriented Technology
5. Portability
6. Commercial-off-the-shelf (COTS)

Software
7. Product Service History

Appendix A – IVT Presentation Visuals A-14

Software Reuse - 27
October 29-30, 2003

“If you don’t know where you are going,
any road will lead you there.” (eastern saying)

Software Reuse - 28
October 29-30, 2003

Planning for Reuse

• Reuse doesn’t just
happen.

• Reuse must be well
planned.

• Reuse must be well
managed.

Appendix A – IVT Presentation Visuals A-15

Software Reuse - 29
October 29-30, 2003

Reifer’s 10 Steps To “Reuse
Adoption”

• Define the company vision/strategy
• Determine company’s current reuse

status
• Establish an operation concept for the

company
• Prepare a business case for the company
• Develop a company business plan

Software Reuse - 30
October 29-30, 2003

Reifer’s 10 Steps To “Reuse
Adoption” (cont)

• Focus early efforts on company
infrastructure

• Make an initial success
• Try the ideas before they are solidified
• Strive for a success image
• Iterate & refine the process based on

results

Appendix A – IVT Presentation Visuals A-16

Software Reuse - 31
October 29-30, 2003

McConnell’s Keys to
Success in Reuse

• Take advantage of personnel continuity
between old & new programs

• Do not overestimate your savings
• Secure long-term, high-level

management commitment to a reuse
program

Software Reuse - 32
October 29-30, 2003

McConnell’s Keys to
Success in Reuse (cont)

• Make reuse an integral part of the
development process

• Establish a separate reuse group
• Focus on small, sharp, domain-specific

components.
• Focus design efforts on abstraction &

modularity.

Appendix A – IVT Presentation Visuals A-17

Software Reuse - 33
October 29-30, 2003

Things To Be Addressed In
Planning

• Reifer’s Steps
• McConnell’s Keys
• Safety
• Software/Software and Software/Hardware

Integration
• Portability
• Maintenance
• Re-Verification

Software Reuse - 34
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-18

Software Reuse - 35
October 29-30, 2003

What is Domain Engineering?

• Domain is a group or family of related
systems. All systems in that domain share a
set of capabilities and/or data. (Sodhi)

• Two Sides of Reuse:
− Domain engineering Developing for reuse
− Reuse engineering Developing with reuse

• Domain engineering is a developing field – it
is still relatively immature

Software Reuse - 36
October 29-30, 2003

Some Concepts of Domain
Engineering

• Knowledge reuse
• Repositories of components
• Reuse of architectural domain knowledge
• Reuse of software designs and patterns
• Reduction of “cognitive distance”

Cognitive distance is the intellectual effort required
to take a software system from one stage

of development to another (Girardi/Ibrahim)

Appendix A – IVT Presentation Visuals A-19

Software Reuse - 37
October 29-30, 2003

Software Reuse - 38
October 29-30, 2003

What Is A Component?

1. Prewritten elements of software with clear
functionality and well-defined interface. (Rhodes)

Appendix A – IVT Presentation Visuals A-20

Software Reuse - 39
October 29-30, 2003

What Is A Component?
(cont)

2. An atomic software element that can be reused
or used in conjunction with other components; ideally,
it should work without modification and without the
engineer needing to know the content and internal
function of the component. However, the interface,
functionality, pre-conditions, and post-conditions
performance characteristics and required supporting
elements must be well known. (Lattanze)

Software Reuse - 40
October 29-30, 2003

What Is A Component?
(cont)

3. A self-contained part, combination of parts,
sub-assemblies or units, which performs a distinct
function of a system. (DO-178B)

Appendix A – IVT Presentation Visuals A-21

Software Reuse - 41
October 29-30, 2003

What Is A Component?
(cont)

• AC 20-RSC Reusable software
component (RSC) is the software code and
its supporting DO-178B documentation
being considered for reuse. It forms a
portion of the software that will be
implemented by the integrator/applicant.

Software Reuse - 42
October 29-30, 2003

Examples of Components

• Real-time operating systems
• Software libraries
• Loading software
• Communication protocol stacks

A component is a piece of software and/or data
that can be “chunked” by itself.

Appendix A – IVT Presentation Visuals A-22

Software Reuse - 43
October 29-30, 2003

Key Properties of a Software
Component

1. The component may
be used by other
program elements.

2. The users and
developers of the
software component
do not need to know
each other. (Meyer)

Software Reuse - 44
October 29-30, 2003

3 Attributes of Software
Components

• It is reusable
• It has clear functionality

− Single purpose
− Encapsulates related functions
− Properly sized

• It has well-defined interfaces
− E.g., consistent syntax, logical design, predictable

behavior, & consistent method of error handling.
− Complete, consistent, & cohesive interfaces

Appendix A – IVT Presentation Visuals A-23

Software Reuse - 45
October 29-30, 2003

8 Qualities of Software
Components (Meyer)

• Careful specification of functionality &
interface

• Correctness – works as specified
• Robustness – doesn’t fail if used properly
• Ease of identification
• Ease of learning
• Wide-spectrum of coverage
• Consistency
• Generality – useful for multiple environments

Software Reuse - 46
October 29-30, 2003

Component Library

• Contains software
components/assets to be reused
throughout a company

• Library should:
− Provide seamless access to

authorized users
− Be searchable & browsable
− Be integrated into the engineering

environment

Appendix A – IVT Presentation Visuals A-24

Software Reuse - 47
October 29-30, 2003

Component Library (cont)

• Items in the library should contain:
− Design narratives – an overview of the

component
− All data that supports the component

(e.g., plans, requirements, design,
verification records, etc.)

− Design rationale – detailed explanation of
design decisions

Software Reuse - 48
October 29-30, 2003

Component Library (cont)

• Design Rationale
− Communicates the design decisions and can

help users determine if it meets their needs
− Internal Design Rationale – describes internal

interaction within the component
− External Design Rationale – describes

interaction of the component with the outside
world

Appendix A – IVT Presentation Visuals A-25

Software Reuse - 49
October 29-30, 2003

Component Library (cont)

• Aspects of Libraries to be
Considered:
− Format of components & assets entered

into the library should be useful &
consistent

− Best utilization of search capabilities
− Library management, operation, &

maintenance

Software Reuse - 50
October 29-30, 2003

Components & Safety – Items
to Consider

• Planning
• Traceability of requirements
• Re-verification
• Interface documents
• Partitioning/protection
• Artifacts
• Maintenance
• Unused code

Appendix A – IVT Presentation Visuals A-26

Software Reuse - 51
October 29-30, 2003

Software Reuse - 52
October 29-30, 2003

IEEE Definition of OOT: “A software
development technique in which a system
or component is expressed in terms of
objects and connections between those
objects”
Centered around “objects” and “classes”

OOT Overview

Appendix A – IVT Presentation Visuals A-27

Software Reuse - 53
October 29-30, 2003

OOT Overview (cont)

Message 1 Message 2Object

Software Reuse - 54
October 29-30, 2003

Definition of Class:
“a set of objects
that share a
common structure
and a common
behavior” (Booch)

OOT Overview
(cont) Class Name

Attributes:

Operations:

Appendix A – IVT Presentation Visuals A-28

Software Reuse - 55
October 29-30, 2003

Typical
– abstraction
– modularity
– concurrency
– persistence

OOT
Overview

(cont)

Unique to OOT
– **encapsulation
– **hierarchy
– **typing

Software Reuse - 56
October 29-30, 2003

Abstraction: Helps to address complexity by
providing crisply defined boundaries.
Modularity: The process of partitioning a program
into logically separated and defined components
that possess defined interactions and limited
access to data.
Concurrency: Process of carrying out several
events simultaneously.
Persistence: Property of an object through which
its existence transcends time and/or space.

OOT Overview (cont)

Appendix A – IVT Presentation Visuals A-29

Software Reuse - 57
October 29-30, 2003

Encapsulation:

The mechanism that binds together code
and the data it manipulates

Keeps code and data safe from outside
interference and misuse

Generally achieved through information
hiding

OOT Overview (cont)

Software Reuse - 58
October 29-30, 2003

Hierarchy: The ordering of abstractions.

Examples of hierarchy: single inheritance
and multiple inheritance

Sub-class “inherits” all of the existing
attributes and operations of the original
class, called the “parent” or “superclass”

OOT Overview (cont)

Appendix A – IVT Presentation Visuals A-30

Software Reuse - 59
October 29-30, 2003

Typing: Enforcement of the class of an
object, such that objects of different types
may not be interchanged, or at the most, they
may be interchanged only in very restricted
ways

Polymorphism is a concept closely related
to typing.
Polymorphism comes from the Greek
meaning “many forms.”

OOT Overview (cont)

Software Reuse - 60
October 29-30, 2003

OOT Methodology

OOA = Object-Oriented Analysis

OOD = Object-Oriented Design

OOP = Object-Oriented Programming

OOV/T = Object-Oriented Testing

Appendix A – IVT Presentation Visuals A-31

Software Reuse - 61
October 29-30, 2003

OOA
Identify user
requirements

(use cases)

Identify classes
(attributes &

operations) (CRC)

Specify class
hierarchy

(CRC)

Identify object-
to-object

relationships (OR)

Model object
 behavior (OB)

R
eapply as needed

Software Reuse - 62
October 29-30, 2003

OOD

• Blueprint for software construction.
• Four layers of design are usually

defined:
− subsystem layer,
− class and object layer,
− message layer, and
− responsibilities layer.

Appendix A – IVT Presentation Visuals A-32

Software Reuse - 63
October 29-30, 2003

OOP

• Examples: SmallTalk, Java, C++, Ada 95
• C++ starting to be used in airborne

avionics
• Some concerns: dynamic memory

allocation, multiple inheritance, virtual
base classes, run-time identification,
templates, exceptions, and namespaces
are deleted

Software Reuse - 64
October 29-30, 2003

OOV/T

• Process of detecting errors and
verifying correctness of the OOA,
OOD, and OOP. OOV/T

• Includes reviews, analyses, and tests
of the software design and
implementation

Appendix A – IVT Presentation Visuals A-33

Software Reuse - 65
October 29-30, 2003

OOV/T (cont)

• OOV/T requires slightly different
strategies and tactics than the
traditional structured approach.
− Because of inheritance, encapsulation, and

polymorphism.
• Most developers use a “design for

testability” approach to begin
addressing any verification/test issues
early in the program.

Software Reuse - 66
October 29-30, 2003

How OOT Supports Reuse

• OOT helps to break complex systems
into manageable pieces

• It’s easier to implement OO design
into code (using OO languages)

• OO model-based approach supports
use of development tools

More to come on OOT in Day 2

Appendix A – IVT Presentation Visuals A-34

Software Reuse - 67
October 29-30, 2003

Software Reuse - 68
October 29-30, 2003

James Mooney
“Developing Portable Software”

Appendix A – IVT Presentation Visuals A-35

Software Reuse - 69
October 29-30, 2003

Portability

• Goal of portability is transporting
software to new platforms and/or
environments with minimal
adaptation.

• Portability is a desirable attribute for
most software intended for reuse.

Note: Material based on James Mooney of
University of West Virginia’s work

Software Reuse - 70
October 29-30, 2003

Portability Design Strategies

• Identify the minimum necessary set
of environmental requirements &
assumptions.

• Eliminate all unnecessary
assumptions throughout the design.

Appendix A – IVT Presentation Visuals A-36

Software Reuse - 71
October 29-30, 2003

Portability Design Strategies
(cont)

• Identify specific environment interface
required. For each interface, either:
− Encapsulate the interface completely in a suitable

module, package, object, etc; or
− Identify a suitable standard for the interface, which

is expected to be available in most target
environments.

• Anticipate the need to provide a software
layer to “bridge the gap” for environments
which don’t meet the interface assumptions.

Software Reuse - 72
October 29-30, 2003

Technical Considerations of
Portability

• Classification of Components
− Classify complete applications according to

their environmental interfaces & requirements
• Specification of Portability Requirements

♦how much portability is needed
♦what kind of environments will be used
♦what costs can be accepted to achieve

portability

Appendix A – IVT Presentation Visuals A-37

Software Reuse - 73
October 29-30, 2003

Technical Considerations of
Portability (cont)

• Measurement Techniques
− Ways to measure portability-based cost &

effectiveness
• Design Considerations

− Portability has significant impact on the design
process

• Cultural Adaptation
− Adapting to the conventions of new

environments & users

Software Reuse - 74
October 29-30, 2003

Technical Considerations of
Portability (cont)

• Verification & Validation
− Verification activities, such as reviews,

analysis, & testing are needed to ensure
correctness in all applications &
implementations.

Appendix A – IVT Presentation Visuals A-38

Software Reuse - 75
October 29-30, 2003

Technical Considerations of
Portability (cont)

• Common Problems With Portability
− OS inconsistencies
− Different compiler options/effects
− Incompatible libraries
− Run-time problems
− Underestimation of integration effort
− Architectural inconsistency

Software Reuse - 76
October 29-30, 2003

Real-Time Issues for
Portability

• Timing
• Memory Allocation
• Memory Deallocation
• Dynamic Task Creation
• Scheduling Control
• Synchronization & Communication
• Events & Input/Output
• File Access
• Partitioning and Protection

Appendix A – IVT Presentation Visuals A-39

Software Reuse - 77
October 29-30, 2003

COTS = Commercial-Off-The-Shelf

Software Reuse - 78
October 29-30, 2003

Borrowed from Jim Krodel
presentation (2002)

GRAPHIC

Appendix A – IVT Presentation Visuals A-40

Software Reuse - 79
October 29-30, 2003

COTS Software Definitions

• RTCA/DO-178B: Commercially available
applications sold by vendors through
public catalog listings. COTS software is
not intended to be customized or
enhanced. Contract-negotiated software
developed for a specific application is not
COTS software.

Software Reuse - 80
October 29-30, 2003

COTS Software Definitions
(cont)

• FAA Research Report: Any software
product that is not developed within a
given company for a specific application
for that company. In particular,
information regarding the software
product’s development and fabrication is
not known or not available to the user of
the COTS product. (Krodel)

Appendix A – IVT Presentation Visuals A-41

Software Reuse - 81
October 29-30, 2003

Two Classes of COTS

• Class 1 – Integrity Unknown
− No access to software life cycle data
− Level D
− FAA Order 8110.49 (Chapter 8)

• Class 2 – COTS with Integrity
− Developed using DO-178B
− Software life cycle data exists
− Potential use for all software levels

Software Reuse - 82
October 29-30, 2003

FAA COTS Research

• Since 1999 FAA has been sponsoring
research to consider use of COTS in
airborne systems.

• Research reports may be found on the
software web-site: http://av-
info.faa.gov/software
− COTS HW Report (DOT/FAA/AR-01/41)
− COTS SW Report (DOT/FAA/AR-01/26)
− COTS RTOSs Report (DOT/FAA/AR-02/118)
− COTS RTOSs and architectural considerations

Report (SOON TO BE PUBLISHED)

Appendix A – IVT Presentation Visuals A-42

Software Reuse - 83
October 29-30, 2003

FAA COTS Research (cont)

• Phases 1 & 2: Considered both COTS
hardware and software – survey of
industry and potential alternatives
− Revealed that the real-time operating system

(RTOS) is a COTS component that many
applicants plan to use.

• Phase 3: Considered protection
techniques applicable to COTS RTOS
software and developed a generic stress
test plan

Software Reuse - 84
October 29-30, 2003

FAA COTS Research (cont)

• Phase 4: Investigated Protection
Architectures/Techniques for COTS
Operating Systems

• Research continues to look at RTOS
integration approaches

Appendix A – IVT Presentation Visuals A-43

Software Reuse - 85
October 29-30, 2003

COTS Research Highlights:
Background

• COTS – The Hope for Reduced
Development Costs

• Applicant’s are thus applying pressures
on certification authorities to approve
systems with COTS Software (SW)

• All Airborne Software (COTS or not) Must
Still Follow DO-178B

Software Reuse - 86
October 29-30, 2003

• COTS SW Vendor Market
− Typically not aerospace – lacks DO-178B Rigor

• Regulatory Assessment of COTS SW
− Pedigree difficult to assess

• Alternate methods
− Reverse Engineering, Wrappers, Service History,

etc. being offered for DO-178B compliance
• Competitive and Management Concerns

− Access to records, etc.

COTS Research Highlights:
Certification Issues

Appendix A – IVT Presentation Visuals A-44

Software Reuse - 87
October 29-30, 2003

• Vendor & Applicant Business
Relationship

• Problem Reports
• Unused / Unintended Functions
• Previous COTS SW Operational

Environment
• Version Control
• New Releases

COTS Research Highlights:
Other Issues

Software Reuse - 88
October 29-30, 2003

• Growing in Airborne Applications
− Cost, Schedule Reductions, etc.
− RTOS Services in the Aircraft Domain

are Increasing
♦COTS RTOS expertise may be a better suited

developer
♦Risk is lack of Vendor DO-178B knowledge

− Several RTOS Vendors are making
“DO-178B Ready RTOS’ Available”

COTS Research Highlights:
COTS RTOS

Appendix A – IVT Presentation Visuals A-45

Software Reuse - 89
October 29-30, 2003

• Data consistency
• Inclusion of deactivated code or

dead code
• Tasking
• Scheduling
• Memory and I/O device access
• Queuing
• Interrupts and Exceptions

COTS Research Highlights:
RTOS Failures With Potential

Safety Impacts

Software Reuse - 90
October 29-30, 2003

• An approach considered to test
COTS RTOSs

• Robustness Test Plan Considered:
− Task Handling
− Memory Management
− Interrupt Handling

COTS Research Highlights:
Robustness Test Plan (Case Study

in Phase 3 & 4)

Appendix A – IVT Presentation Visuals A-46

Software Reuse - 91
October 29-30, 2003

Next Steps of Research - RTOS &
Component Integration

• Partition System Development
− Design Approaches & Constraints
− Guidance for RTOS developers,

Designers, Integrators, Applications in a
Partition

− Partition System Build Techniques
− Building a Verifiable System
− Health Monitoring Activities
− Incremental Cert. Considerations

Software Reuse - 92
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-47

Software Reuse - 93
October 29-30, 2003

Software Reuse - 94
October 29-30, 2003

Product Service History
Definition (DO-178B)

• A contiguous period of time during
which the software is operated within
a known environment, and during
which successive failures are
recorded.

Appendix A – IVT Presentation Visuals A-48

Software Reuse - 95
October 29-30, 2003

Service History And DO-178B

• Service History is one of the alternate
methods

• Acceptability for certification credit is
dependent on:
− Configuration Management of the Software
− Effectiveness of Problem Reporting
− Stability and Maturity of Software
− Relevance of Product Service History Environment
− Actual Error Rates
− Impact of Modifications

Software Reuse - 96
October 29-30, 2003

Attributes To Be Evaluated

• Service duration length
• Change control during service
• Proposed use versus service use
• Proposed environment to service

environment
• Number of significant mods during

service
− Hardware mods & software mods

Appendix A – IVT Presentation Visuals A-49

Software Reuse - 97
October 29-30, 2003

Attributes To Be Evaluated
(cont)

• Error detection capability
• Error reporting capability
• Number of in-service errors
• Amount/quality of service history data

available and reviewed

Software Reuse - 98
October 29-30, 2003

Software Service History
(SSH) Research

Although Service History seems to be a
fairly straightforward technique, in practice,
such use has proved extremely problematic
because of the following:
− Difficulty in proving relevance of environment
− Consistency in the measure of historic

performance:
♦ Effectiveness of problem reporting
♦ Stability/Maturity of software
♦ What is the minimum “duration” of data at different

criticality levels
♦ How to compute “error rates”

Appendix A – IVT Presentation Visuals A-50

Software Reuse - 99
October 29-30, 2003

SSH Handbook Outline
(DOT/FAA/AR-01/116 at http://av-info.faa.gov/software)

• Introduction
• DO-178 Framework

– The definition
– Analysis of Product Service History in DO-

178B (Table 1)
– Relationship with Previously Developed

Software
– Product Service History Vs. Software

Reliability

Software Reuse - 100
October 29-30, 2003

• The Elements of Product Service
History
– Questions of Problem Reporting
– Questions of Operation
– Questions of Environment
– Questions of Time

SSH Handbook Outline
(DOT/FAA/AR-01/116) (cont)

Appendix A – IVT Presentation Visuals A-51

Software Reuse - 101
October 29-30, 2003

• Adequacy of the Development Process
• Establishment of “Equivalent Safety”
• Summary
• Bibliography
• Appendix A: Evaluation Worksheets

SSH Handbook Outline
(DOT/FAA/AR-01/116) (cont)

Software Reuse - 102
October 29-30, 2003

Analysis of PSH Guidance
in DO-178B

• Table 1 of the Handbook provides a
detailed review and analysis of the
eleven guidance statements for the
use of product service history found
in DO-178B, section 12.3.5

• Use Table 1 to understand “WHY”
each guidance statement exists

Appendix A – IVT Presentation Visuals A-52

Software Reuse - 103
October 29-30, 2003

Analysis of PSH Guidance
in DO-178B (cont)

• Table 1 is designed to help understand the
underlying rationale behind each of the
guidance statements by providing:
− A set of observations on what is being

discussed and where some of the pitfalls may
be in satisfying that guidance statement

− An initial round of questions to ask regarding
the available data

− A clear linkage back to the elements of the
definition of PSH through the Questions
metaphor used throughout the Handbook

Software Reuse - 104
October 29-30, 2003

Sample Worksheet (Table A-1)

Appendix A – IVT Presentation Visuals A-53

Software Reuse - 105
October 29-30, 2003

SSH Research Conclusions

• Worksheets- list general considerations
for evaluating service history.

• Worksheets must be customized for each
program.

• A list of assurance deficiencies may be
derived using these worksheets for a
particular program.

• Other available data as well as focused
supplemental verification may be applied
to complete DO-178B objectives.

Software Reuse - 106
October 29-30, 2003

SSH Research
Conclusions (cont)

• Other alternate methods of compliance
such as reengineering may also be
applied to supplement objective evidence.

• FAA expects all of the objectives to be
fulfilled regardless of what mix of methods
are used to show compliance.

Appendix A – IVT Presentation Visuals A-54

Software Reuse - 107
October 29-30, 2003

Other Resources on Service
History

• CAST-1 paper entitled: “Guidance for
Assessing the Software Aspects of
Product Service History of Airborne
Systems and Equipment” (software web-
site)

• DO-248B discussion paper #4 (section 4.4)
entitled: “Service History Use – Rationale
for DO-178B/ED-12B, Section 12.3.5a
through k”

Software Reuse - 108
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-55

Software Reuse - 109
October 29-30, 2003

Software Reuse - 110
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-56

Software Reuse - 111
October 29-30, 2003

Characteristics of Organizations
with Highest Reuse

• Use a product-line approach
• Utilize an architecture which

standardizes interfaces and data
formats

• Use common software architecture
across product lines

• Implement a design for
manufacturing approach

Software Reuse - 112
October 29-30, 2003

Characteristics of Organizations
with Highest Reuse (cont)

• Use domain engineering
• Have a defined software reuse

process
• Management understands reuse

issues.
• Have software reuse advocate(s) in

senior management

Appendix A – IVT Presentation Visuals A-57

Software Reuse - 113
October 29-30, 2003

Characteristics of Organizations
with Highest Reuse (cont)

• Employ state-of-the-art reuse tools
and methods

• Reuse more than just code (e.g.,
requirements and design)

• Trace end-user requirements to the
components which support them

Rine/Sonnerman

Software Reuse - 114
October 29-30, 2003

• Before you can reuse something, you
need to:
• Find it
• Know what it does
• Know how to reuse it

~ Tracz ~

Appendix A – IVT Presentation Visuals A-58

Software Reuse - 115
October 29-30, 2003

REBOOT – Reuse Maturity
Model (RMM)

• REBOOT = REuse Based on Object
Oriented Techniques

• Implements 5 Levels Like the SEI
Capability Maturity Model

Software Reuse - 116
October 29-30, 2003

REBOOT – Reuse Maturity
Model (RMM) (cont)

• Level 1 – Initial or Chaotic
− No planned reuse
− Only unintentional reuse occurring

• Level 2 – Repeatable
− Project-to-project reuse
− Limited scope
− No overall reuse strategy

Appendix A – IVT Presentation Visuals A-59

Software Reuse - 117
October 29-30, 2003

REBOOT – Reuse Maturity
Model (RMM) (cont)

• Level 3 – Defined
− Defined company-wide reuse strategy
− Defined processes allow for reuse

across the company
− Company-wide reuse library
− Each project is evaluated for reuse

potential in accordance with the
company’s reuse strategy

Software Reuse - 118
October 29-30, 2003

REBOOT – Reuse Maturity
Model (RMM) (cont)

• Level 4 – Managed
− Reuse processes and reusable assets of the

company are controlled and understood in
detail.

• Level 5 – Optimized
− Quantitative feedback
− Continuously improve reuse processes &

assets
− Innovative ideas are evaluated and applied

Appendix A – IVT Presentation Visuals A-60

Software Reuse - 119
October 29-30, 2003

REBOOT – Reuse Maturity
Model (RMM) (cont)

• Key Reuse Areas
1. Reuse commitment
2. Project management
3. Asset management
4. Metrics
5. Development process

Software Reuse - 120
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-61

Software Reuse - 121
October 29-30, 2003

Common Certification
Concerns With Reuse

• Lack of insight into the software being
reused (e.g., COTS)

• Lack of data to support the certification
effort

• Failure to PLAN for reuse in the original
development of the software (i.e.,
Salvaging vs. reuse)

• Dead or deactivated code that may exist in
the reused software

Software Reuse - 122
October 29-30, 2003

Common Certification Concerns
With Reuse (cont)

• Robustness of the reused software in a
new application

• Interface challenges
• Data and control coupling
• In-service problems with the software to be

reused
• Requirements levels and definitions
• Traceability between the reused software

and its new application

Appendix A – IVT Presentation Visuals A-62

Software Reuse - 123
October 29-30, 2003

Common Certification Concerns
With Reuse (cont)

• Determining the amount
of re-verification needed

• Trust that the first usage
was adequately assured

• Determining the suitability
of the new domain

Software Reuse - 124
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-63

Software Reuse - 125
October 29-30, 2003

Software Reuse - 126
October 29-30, 2003

Summary of Day 1

• Reuse is desirable for many reasons
• We explored seven concepts related to

reuse
• Reuse requires careful planning
• There are a number of certification and

safety concerns regarding software reuse
• Safety must be a priority
• FAA has several initiatives underway to

help address reuse

Appendix A – IVT Presentation Visuals A-64

Software Reuse - 127
October 29-30, 2003

What’s Coming on Day 2

• FAA Policy, Guidance, & Activities Related
to Software Reuse

Reuse of Software Life Cycle Data (Ch 12 of
Order 8110.49)
Reusable Software Components (AC 20-
RSC)
Other FAA Reuse-Related Activities
Keys Reuse Considerations

Software Reuse - 128
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-65

Software Reuse - 129
October 29-30, 2003

Software Reuse - 130
October 29-30, 2003

Course Overview
• Day 1:Technical Aspects of

Software Reuse
What is Reuse?
Pros/Cons of Reuse
Reuse Myths
Why Reuse Isn’t Used Much
7 Concepts Relevant to Reuse
Successful Reuse – Pulling It All
Together
Common Certification Concerns
Regarding Reuse

Appendix A – IVT Presentation Visuals A-66

Software Reuse - 131
October 29-30, 2003

Software Reuse - 132
October 29-30, 2003

FAA Reuse-Related Activities

Reuse of Software Life Cycle Data
(Ch 12 of Order 8110.49)
Reusable Software Components (AC
20-RSC)
♦Why the AC is needed
♦Common misconceptions regarding AC 20-

RSC
♦Overview of AC 20-RSC
♦Experience using the AC 20-RSC concept

Appendix A – IVT Presentation Visuals A-67

Software Reuse - 133
October 29-30, 2003

FAA Reuse-Related Activities
(cont)

Other FAA Reuse-Related Activities
♦COTS Research
♦OO Handbook and Research
♦Software Service History Handbook
♦ Integrated Modular Avionics
♦Tool Research and Reuse

Keys For Accepting Reused Software

Software Reuse - 134
October 29-30, 2003

Title of Order: Software Approval Guidelines
Title of Chapter 12: Approving Reused Software Life

Cycle Data
Date of Release: June 3, 2003

SEE APPENDIX D

Appendix A – IVT Presentation Visuals A-68

Software Reuse - 135
October 29-30, 2003

Order 8110.49 (Ch 12) Overview

• Based on Notice 8110.97
• Addresses reuse of software life cycle data

within a company
• Outline:

− 12-1: General
− 12-2: Software Suitable for Reuse
− 12-3: Safety Considerations
− 12-4: Factors Affecting Reuse
− 12-5: Reuse Approval Guidelines

• Good packaging is needed to effectively
reuse software life cycle data.

Software Reuse - 136
October 29-30, 2003

Examples of Good Packaging

• Develop plans and standards to be as “generic” as
possible, with project-specific information in the
PSAC.

• Build and package the software so it can be used
on multiple projects

• Tool qualification data separate for tools used on
all software projects

• Make individual software configuration indices
(SCIs) for components that may later be reused

• Design the software components for reuse (high
cohesion, low coupling)

Appendix A – IVT Presentation Visuals A-69

Software Reuse - 137
October 29-30, 2003

Conceptual Framework
Project A

Project A
Configuration

Index

SCI X
Configuration

Index

SCI Y
Configuration

Index

Op Sys XX.v1
Configuration

Index

Project B
Project B

Configuration
Index

SCI X
Configuration

Index

SCI Z
Configuration

Index

Op Sys XX.v1
Configuration

Index

Reuse data listed
in the SCI-X and

OpSys XX, CI

Software Reuse - 138
October 29-30, 2003

Applicable Definitions
Original First use of the reusable software
Certification life cycle data in a completed cert project.
Project

Subsequent Follow-on project that reuses software
Certification life cycle data from the original
Project certification project.

Reuse Subsequent use of unaffected, previously
approved software life cycle data.

Certification Acceptance that a process, product, or
Credit demo meets the certification

requirements.

Appendix A – IVT Presentation Visuals A-70

Software Reuse - 139
October 29-30, 2003

Software Data produced during the software life
Life Cycle cycle. Also known as the DO-178B,
Data Section 11 data.
Configuration 1) One or more software components treated
Item as a unit. 2) Software life cycle data treated

as a unit.
Software Identifies configuration of an item. Contains
Configuration one or more configuration items.
Index
Software Identifies configuration of the software
Life Cycle life cycle environment.
Env. Index

Applicable Definitions (cont)

Software Reuse - 140
October 29-30, 2003

Software Data that directs the development &
Plans & integral processes.
Standards
Software Computer program used to develop, test,
Tool analyze, produce, or modify another

program or its documentation.
Tool Process necessary to obtain cert credit
Qualification for a tool.
Software Collection of software and related data/
Library documents.

Applicable Definitions (cont)

Appendix A – IVT Presentation Visuals A-71

Software Reuse - 141
October 29-30, 2003

12-2: Software Suitable for
Reuse

• Software plans and standards
• Tool qualification data
• Software libraries
• Software requirements, design, code,

verification procedures, and verification
results.

• Configuration items
• Basically: any unchanged software life

cycle data

Software Reuse - 142
October 29-30, 2003

12-3: Safety Considerations

• FAA can approve for reuse if:
− There is no adverse effect on original

systems safety margins, and
− There is no adverse effect on original

operational capability UNLESS
accompanied by justifiable increase in
safety.

Appendix A – IVT Presentation Visuals A-72

Software Reuse - 143
October 29-30, 2003

12-3: Safety Considerations
(cont)

• FAA will not approve for reuse if
reuse:
− Adversely affects safety,
− Exceeds a pre-approved range of data or

parameters, or
− Exceeds equipment performance

characteristics.

Software Reuse - 144
October 29-30, 2003

12-4: Factors Affecting Reuse

a. Any Section 11 data can be reused
if:
− It remains unchanged
− It is applicable to the project
− No safety issues exist

b. In-service problems might limit
reuse. Open problems reports
should be analyzed prior to reuse

Appendix A – IVT Presentation Visuals A-73

Software Reuse - 145
October 29-30, 2003

12-4: Factors Affecting Reuse
(cont)

c. Assessment should be performed to
show similarity of operational
environment and safety assessment
− Builds on a and b

Software Reuse - 146
October 29-30, 2003

12-5: Reuse Approval
Guidelines

• Certification authority should ensure that:
− Data to be reused is unchanged.
− The software level is equivalent to (or less

than) software level of the previous approval.
− Range & data type of inputs are equivalent to

previous approval.
− Configuration items are used on the same

target environment and in same operational
way.

Appendix A – IVT Presentation Visuals A-74

Software Reuse - 147
October 29-30, 2003

12-5: Reuse Approval
Guidelines (cont)

• Certification authority should ensure that
(cont):
− Equivalent software/hardware integration and

system testing conducted on same target and
system as previous approval.

− Applicant addressed safety considerations.
− Reuse rationale is documented in “Additional

Considerations” portion of the PSAC.

Software Reuse - 148
October 29-30, 2003

Summary of Chapter 12 of
Order 8110.49

• Reuse of software life cycle data on
multiple certification projects is
feasible

• If a data item hasn’t changed and is
applicable for the current project, it is
a candidate for re-use

• Present plan for reuse in PSAC and
get early ACO agreement

Appendix A – IVT Presentation Visuals A-75

Software Reuse - 149
October 29-30, 2003

Software Reuse - 150
October 29-30, 2003

Title: Reusable Software Components (RSC)
Target Release: Nov/Dec 2003
IVT Based on: Draft 9.2 (9/24/03)

SEE APPENDIX E

Goal: To be able to carry certification “credit”
for reusable software component from one project
to the next

Appendix A – IVT Presentation Visuals A-76

Software Reuse - 151
October 29-30, 2003

Why Is This AC Needed?

• To support IMA concept, where reuse is
critical

• To optimize use of FAA and applicant
resources

• To provide guidance for third party
manufacturers who may not have
certification experience

• To ensure that all applicable DO-178B
objectives are met for reusable
components

Software Reuse - 152
October 29-30, 2003

Addressing Some
Misconceptions About This AC

• It is not an “approval”
• It does not release the

applicant from
responsibility

• It will likely require
additional resources from
FAA and applicants on the
first use of an RSC

Appendix A – IVT Presentation Visuals A-77

Software Reuse - 153
October 29-30, 2003

Addressing Some Misconceptions
About This AC (cont)

• It is not easy
• The certification authority may need to

do additional review activity on an RSC if
installation, safety, operational,
performance, or functional issues exist

• An RSC acceptance letter does not mean
all the DO-178B objectives of the RSC
are met yet

Software Reuse - 154
October 29-30, 2003

AC Overview

• 1-4:Purpose, Background, Related Documents, &
Document Overview

• 5: Discussion & General Guidelines
• 6: Guidelines for the RSC Developer
• 7: Data Supplied to RSC Integrator and/or

Applicant
• 8: Guidelines for the Integrator and Applicant
• 9: Expectations from Certification Authorities on

the First Use of the RSC

Appendix A – IVT Presentation Visuals A-78

Software Reuse - 155
October 29-30, 2003

AC Overview (cont)

• 10: RSC Acceptance Letter
• 11: Expectations from Certification Authorities on

Subsequent Use of an Accepted RSC
• 12: Common Software Reuse Issues
• 13: Changes to RSCs
• 14: Concurrent use of an RSC
• Appendix 1 – Definitions
• Appendix 2 – Acronyms
• Appendix 3 – Sample Format for RSC Table

Software Reuse - 156
October 29-30, 2003

Important Definitions

• Reusable software component (RSC) is the
software code and its supporting DO-178B
documentation being considered for reuse. It
forms a portion of the software that will be
implemented by the integrator/applicant.

• Reusable software component developer (RSCD)
is the manufacturer of the reusable software
component.

Appendix A – IVT Presentation Visuals A-79

Software Reuse - 157
October 29-30, 2003

• Integrator is the manufacturer responsible
for integrating the re-useable software
component into the target computer and
with other software components.

• Applicant is the manufacturer seeking
certification or authorization of the overall
system.

Important Definitions (cont)

Software Reuse - 158
October 29-30, 2003

• Traditionally, software approval is at
the system level.

• In the past no vehicle to carry
certification credit across project
boundaries existed.

• Purpose of this AC is to provide
guidelines for allowing “credit for
DO-178B objectives” across projects.

1-4: Purpose, Background, Related
Documents, &Document Overview

Appendix A – IVT Presentation Visuals A-80

Software Reuse - 159
October 29-30, 2003

• RSC Examples:
− Operating Systems
− Libraries
− Loading Software

• AC ensures that all applicable DO-178B
objectives are met for each use of the
RSC.

• Guidelines are applicable within a
company or across company boundaries.

1-4: Purpose, Background, Related
Documents, &Document Overview

(cont)

Software Reuse - 160
October 29-30, 2003

• Note: Concepts of component reuse
document in this AC may apply to
tools (see note in Section 2).

1-4: Purpose, Background, Related
Documents, &Document Overview

(cont)

Appendix A – IVT Presentation Visuals A-81

Software Reuse - 161
October 29-30, 2003

Reusable Software
Component Developer
(RSCD)

Integrator

Applicant
Certification
Authorities

Note: Cert authorities may have more involvement than a traditional
software development project for the initial component development.

Section 5: Discussion
STAKEHOLDERS

Software Reuse - 162
October 29-30, 2003

a. First acceptance of RSC is a “real” project.
b. Stakeholders must agree on reuse.
c. Each project is unique and might have

different “credit”.
d. Applicant is responsible for final certification.
e. Acceptance on one project doesn’t guarantee

acceptance on another. Installation, safety,
operational, functional, and performance
considerations must be considered on each
project.

Section 5: Discussion (cont)

Appendix A – IVT Presentation Visuals A-82

Software Reuse - 163
October 29-30, 2003

f. International programs may
require additional coordination.

g. Integrator/applicant required to
address all objectives and
coordinate communication.

h. Other guidance and regulations
apply.

i. Discourages alternate means to
DO-178B.

Section 5: Discussion (cont)

Software Reuse - 164
October 29-30, 2003

Overview of
the Process

Stakeholders agree that reuse is a
desirable & obtainable goal.

RSCD, integrator, & applicant plan
for reuse.

RSCD, integrator, & applicant document
reuse credit per objective.

PSAC reviewed & approved by
cert authorities.

RSC developed per plans with cert
authority oversight.

ACO writes acceptance letter for RSC to
RSCD and applicant.

Same configuration & version of RSC
used on other programs within limitations.

Appendix A – IVT Presentation Visuals A-83

Software Reuse - 165
October 29-30, 2003

Section 6 – Guidelines for
RSC Developer

• Document Reuse intent in the PSAC
− Reuse credit for each objective
− Assumptions for each objective
− Means of compliance for each objective
− Remaining activities for the installer/applicant

for each objective
• Appendix 3 contains an example format for

documenting this information

Software Reuse - 166
October 29-30, 2003

Example Approach
(Appendix 3)

178B
Obj #

Obj Description Credit
Sought

Assumption Means of
Compliance for the

Objective

Activities Remaining
For

Integrator/Applicant

1-1 Software development
and integral processes
activities are defined.

1-2 Transition criteria,
inter-relationships
and sequencing
among processes are
defined.

Appendix A – IVT Presentation Visuals A-84

Software Reuse - 167
October 29-30, 2003

Example Approach (cont)

• Document objective, credit sought,
assumptions, and remaining activities
in the PSAC and Accomplishment
Summary.

• Address target dependencies.
• Address assumptions regarding

requirements; particularly high-level
requirements.

• Be specific and thorough.
• Obtain FAA input & agreement on

proposals up-front.

Software Reuse - 168
October 29-30, 2003

Example Approach (cont)
[Full Credit]

• Objective 1-1: Software development and
integral processes activities are defined.

• Credit Sought: Full
• Assumptions: Plans are completed and

unchanged for router.
• Remaining Activities: Applicant/integrator

to complete LRU level plans, reference
router plans/data, & consider reuse in
“Additional Considerations”

Appendix A – IVT Presentation Visuals A-85

Software Reuse - 169
October 29-30, 2003

Example Approach (cont)
[Partial Credit]

• Objective 2-1: High-level requirements are developed.
• Credit Sought: Partial
• Assumptions: Assuming high level requirements are

document XXX, revision - and the LRU manufacturer
uses those requirements.

• Remaining Activities: Because the high-level
requirements actually exist at the LRU level, they
cannot be fully implemented at the software
component level. The applicant may reference and tie
to the component-level high-level requirements as
their own high-level requirements. If this occurred, the
applicant would also need to verify the high-level
functionality of these requirements in their system.

Software Reuse - 170
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-86

Software Reuse - 171
October 29-30, 2003

Software Reuse - 172
October 29-30, 2003

Section 6 – Guidelines for RSC
Developer (cont)

• Document safety-related issues
• Address common reuse issues (section 12)
• Coordinate plans with all stakeholders &

follow them
• Submit SAS and SCI, with the completed

compliance tables
• Submit data sheet to the FAA

− See Appendix G for an example data sheet

Appendix A – IVT Presentation Visuals A-87

Software Reuse - 173
October 29-30, 2003

Section 6 – Guidelines for RSC
Developer (cont)

• Supply data to the applicant to
support the type design and
continued airworthiness (per
Section 7)
− Turn to Section 7 of the AC to

review the software life cycle
data to be supplied to the
applicant.

Software Reuse - 174
October 29-30, 2003

Section 8 - Guidelines for RSC
Integrator/Applicant

• Integrate RSC data into the project
data

• Specify the life cycle data needed from
the applicant (per Section 7)

• Evaluate installation, safety,
operational, performance, and
functional issues of the RSC

• Coordinate & follow plans and
standards

• Consider open problem reports and
in-service problems of the RSC

Appendix A – IVT Presentation Visuals A-88

Software Reuse - 175
October 29-30, 2003

Section 8 - Guidelines for RSC
Integrator/Applicant (cont)

• Address common reuse issues listed in section
12 of AC and other issues

• Ensure assumptions made by the RSC
developer are met in the application

• Complete the RSC objectives tables in the SAS
• Report in-service difficulties with the RSC
• Establish necessary legal agreements with the

RSC developer to meet regulations

Software Reuse - 176
October 29-30, 2003

Section 9 – Expectations From Cert
Authority on 1st Approval of the RSC

• Involvement with all stakeholders
• Involvement of technical experts, as

needed
• Review plans of RSC developer and

1st applicant for consistency
• Perform on-site & desk reviews, as

needed

Appendix A – IVT Presentation Visuals A-89

Software Reuse - 177
October 29-30, 2003

Section 9 – Expectations From Cert
Authority on 1st Approval of the RSC

(cont)

• Ensure that process is in place to support
continued airworthiness

• Approve project, when objectives are
satisfied

• Write letter for RSC developer explaining
acceptance, limitations, etc. (per Section 10)
− See Appendix H of participant’s guide for an

example

Software Reuse - 178
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-90

Software Reuse - 179
October 29-30, 2003

Section 11 – Expectations From Cert
Authority on Subsequent Use of RSCs

• Review the acceptance letter
• Contact ACO engineer who did the original

acceptance, if needed
• Ensure that the applicant follows the

guidelines of this AC
• Ensure that installation, safety, operational,

functional, and performance concerns are
addressed in the subsequent reuse

Software Reuse - 180
October 29-30, 2003

Section 11 – Expectations From Cert
Authority on Subsequent Use of RSCs

(cont)
• Perform reviews of project plans and data
• Ensure consistency between RSC plans/data

and applicant’s plans/data
• Ensure that any RSC in-service problems do

not affect safety of the subsequent reuse
• Inform original ACO of subsequent

use/approval of RSC

Appendix A – IVT Presentation Visuals A-91

Software Reuse - 181
October 29-30, 2003

Section 12 – Common Issues
& Considerations

• Requirements definition
• Re-verification
• Interface
• Partitioning/Protection
• Data and Control Coupling
• Use of Qualified Tools
• Deactivated Code
• Traceability
• Robustness

Software Reuse - 182
October 29-30, 2003

Section 13 – Changes to RSCs

• When RSC is changed, cannot be
reused without another reuse
application.

Appendix A – IVT Presentation Visuals A-92

Software Reuse - 183
October 29-30, 2003

Section 13 – Changes to RSCs
(cont)

• Change impact analysis should be
performed on changes to RSCs
− Info from Order 8110.49 on change

impact analysis is repeated, because we
could not reference the Order in the AC

Software Reuse - 184
October 29-30, 2003

Section 14 – Concurrent Use
of An RSC

• RSC Developer Should Create a “Reuse
Plan” including:
− List of known applicants
− Policy for addressing additional applicants in

the future
− Schedule for upcoming projects
− Reuse approach
− Software life cycle data being developed
− Summary of unchanged data to be used by

applicants and any user-specific data

Appendix A – IVT Presentation Visuals A-93

Software Reuse - 185
October 29-30, 2003

Section 14 – Concurrent Use
of An RSC (cont)

• “Reuse Plan” includes (cont)
− Suggestions for optimizing FAA and

applicant resources. For example:
♦Suggested ACO to lead the effort (based on

applicant locations and schedules)
♦Suggested approach for performing software

reviews
− List of affected applicants & ACOs
− Plan for informing and keeping users up-to-

date as the RSC develops

Software Reuse - 186
October 29-30, 2003

Section 14 – Concurrent Use
of An RSC (cont)

• “Reuse Plan” should be coordinated
with affected ACOs, applicants, and
integrators.

Appendix A – IVT Presentation Visuals A-94

Software Reuse - 187
October 29-30, 2003

Experiences Using the RSC
Concept To Date

• Several Real-Time Operating
Systems (RTOS)

• A Communication Stack
• A Piece of the NexComm

System (the vocoder)
• A C++ Library

Software Reuse - 188
October 29-30, 2003

Status of AC 20-RSC

• Have Addressed Public Comments
• Version 9.2 Went Forward For Final

Coordination
• AC is in the Final Signature Process
• Should be Signed in the Nov/Dec

timeframe

Appendix A – IVT Presentation Visuals A-95

Software Reuse - 189
October 29-30, 2003

Software Reuse - 190
October 29-30, 2003

♦COTS Research
♦OO Research and Handbook
♦Software Service History

Handbook
♦ Integrated Modular Avionics
♦Tools Research and Reuse

Appendix A – IVT Presentation Visuals A-96

Software Reuse - 191
October 29-30, 2003

Software Reuse - 192
October 29-30, 2003

COTS Research

• As explained in Day #1, four phases of
COTS research have been completed

• Reports may be found on the FAA’s
software web-site:
− http://av-info.faa.gov/software

• The research is now focusing on the
integration of RTOSs and other
components

Appendix A – IVT Presentation Visuals A-97

Software Reuse - 193
October 29-30, 2003

Software Reuse - 194
October 29-30, 2003

OOT Research Efforts

• Industry-sponsored research in OOT started in
2000
− Aerospace Vehicle Systems Institute (AVSI)
− Created a Guide

• FAA-sponsored research in OOT started in 2000
− Focusing on structural coverage issues
− Through NASA Langley and Boeing
− Report available on FAA’s software web-site

(http://av-info.faa.gov/software)

Appendix A – IVT Presentation Visuals A-98

Software Reuse - 195
October 29-30, 2003

OOT Research Efforts (cont)

• Both industry and FAA efforts
revealed the need for specific
guidance when using OOT in aviation
products

• FAA is sponsoring a new task to
consider the following OOT-related
issues:
− Data coupling and control coupling
− Structural coverage at the object code

level

Software Reuse - 196
October 29-30, 2003

OOTiA
Workshops

• NASA and FAA sponsored two
Object-Oriented Technology in
Aviation (OOTiA) workshops

• Workshop #1 was held in April 2002
• Workshop #2 was held in March 2003
• Both workshops were intended to get

government, industry, and academia
together to consider OOTiA

Appendix A – IVT Presentation Visuals A-99

Software Reuse - 197
October 29-30, 2003

OOTiA
Workshops (cont)

• The result of
the OOTiA
workshops
and the OOTiA
team efforts
will a 4-volume
handbook.
Due June
2004.

Volume 1: Handbook Overview

Volume 2: Considerations and
Issues

Volume 3: Best Practices

Volume 4:
Certification Practices

Software Reuse - 198
October 29-30, 2003

OOTiA
Workshops (cont)

• Volume 1: Handbook Overview
− Target Audience: All Handbook users
− Provides background and foundational

information needed to use all other
volumes

Appendix A – IVT Presentation Visuals A-100

Software Reuse - 199
October 29-30, 2003

OOTiA
Workshops (cont)

• Volume 2: Considerations and Issues
− Target Audience: Project planners, decision makers,

certification authorities
− Poses questions to be answered before committing

to OOT
− Presents concerns raised about OOT that are

relevant to certification and safety without
discussing approaches for addressing these
concerns

− Categorizes, summarizes, and discusses key issues
− Provides issue rationale and ties to DO-178B life

cycle processes

Software Reuse - 200
October 29-30, 2003

OOTiA
Workshops (cont)

• Volume 3: Best Practices
• Target Audience: Developers,

certification authorities
• Identifies best practices to safely

implement OOT in aviation by providing
some known ways to address the issues
documented in Volume 2

Appendix A – IVT Presentation Visuals A-101

Software Reuse - 201
October 29-30, 2003

OOTiA
Workshops (cont)

• Volume 4: Certification Practices
− Target Audience: Certification

authorities, designees
− Provides an approach for certification

authorities and designees to ensure that
OOT issues are addressed

Software Reuse - 202
October 29-30, 2003

OOTiA
Workshops (cont)

• For more info on OOTiA:

−Go to: http://shemesh.larc.nasa.gov/foot

−Contact Barbara Lingberg at:
Barbara.Lingberg@faa.gov

Appendix A – IVT Presentation Visuals A-102

Software Reuse - 203
October 29-30, 2003

Software Reuse - 204
October 29-30, 2003

SSH Research

• As explained on Day #1, a SSH Handbook
has been created and is on the FAA’s
software web-site.

• Follow-on research has been carried out
on the WAAS ground-based program
(report to come soon).

• FAA hopes to sponsor additional research
in the area of service history for hardware
tools.

Appendix A – IVT Presentation Visuals A-103

Software Reuse - 205
October 29-30, 2003

M
od

ul
e

1
M

od
ul

e
2

M
od

ul
e

3
M

od
ul

e
4

M
od

ul
e

5
M

od
ul

e
6

M
od

ul
e

7
M

od
ul

e
8

Software Reuse - 206
October 29-30, 2003

What is IMA?

• Defining “IMA” is difficult
• The RTCA modular avionics team

created the following definition:
− Modular avionics is defined as a shared

set of flexible, reusable, and
interoperable hardware and software
resources that create a platform that
provides services, designed and verified
to a defined set of safety and
performance requirements, to host
applications performing aircraft-related
functions.

Appendix A – IVT Presentation Visuals A-104

Software Reuse - 207
October 29-30, 2003

IMA-Related Efforts

• RTCA Special Committee (SC) 182
− Created DO-255 (Avionics Computer

Resource Requirements)
• FAA’s IMA Team

− Developed “TSO-C153, INTEGRATED
MODULAR AVIONICS HARDWARE
ELEMENTS” (May 2002)

− Developed AC 20-145: “GUIDANCE FOR
INTEGRATED MODULAR AVIONICS (IMA) THAT
IMPLEMENT TSO-C153 AUTHORIZED
HARDWARE ELEMENTS” (February 2003)

Software Reuse - 208
October 29-30, 2003

IMA-Related Efforts (cont)

• RTCA Special Committee (SC) 200
− Developing IMA Guidance material
− Joint with EUROCAE Working Group #60

• The “Hardware Element” approach
seeks to reuse hardware elements

• The SC-200/WG-60 effort is striving to
reuse “module qualification”
packages

Appendix A – IVT Presentation Visuals A-105

Software Reuse - 209
October 29-30, 2003

• Read TSO-C153 and AC 20-145 at
http://av-info.faa.gov/software

• Review the IMA IVT from October 2002

Software Reuse - 210
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-106

Software Reuse - 211
October 29-30, 2003

SC-200/WG-60 Schedule

• 3/02 - SC-200 Approved by RTCA
• 5/02 - First SC-200 Meeting
• 8/02 - Became joint with EUROCAE

Working Group #60 (WG-60)
• 3/04 – Goal for Draft Guidance

Document
• 10/04 – Goal for Final Guidance

Document

Software Reuse - 212
October 29-30, 2003

SC-200/WG-60 Highlights

• Builds on FAA’s TSO and AC
• Builds on DO-255 (Avionics

Computer Resource)
• Uses the “Module Qualification”

concept

Appendix A – IVT Presentation Visuals A-107

Software Reuse - 213
October 29-30, 2003

Document Overview

• Section 1: INTRODUCTION
− Purpose
− Scope
− Background
− Stakeholders
− Relationship to other documents
− References
− How to use the document

Software Reuse - 214
October 29-30, 2003

Document Overview (cont)

• Section 2: MODULAR AVIONICS (MA)
− System description & architecture
− Key characteristics

Appendix A – IVT Presentation Visuals A-108

Software Reuse - 215
October 29-30, 2003

Document Overview (cont)

• Section 3: MA-Specific Design and
Integration CONSIDERATIONS
− Design objectives
− Partitioning & resource management
− Health monitoring & fault management
− Configuration
− Integration
− Shared databases for applications

Software Reuse - 216
October 29-30, 2003

Document Overview (cont)
• Section 4: MODULAR AVIONICS

CERTIFICATION CONSIDERATIONS
− System development
− Six tasks (see next slide)
− Safety assessment
− Design assurance (software, hardware,

environment, security)
− Verification & Validation
− Integration
− Configuration management
− Quality assurance
− Certification Liaison

Appendix A – IVT Presentation Visuals A-109

Software Reuse - 217
October 29-30, 2003

Six Modular Avionics
(MA) Tasks

(1) Module(s)
Qualification

(2) Application
Software Approval

System(s)
Development

System(s)
Approval

(4) MA Approval
(on-aircraft)

(5)Change/
(6)Reuse Approval

(3) MA Approval
(off-aircraft)

Change/
Reuse
initiated

Tasks (1) to (4) may apply

Software Reuse - 218
October 29-30, 2003

Document Overview (cont)

• Section 5: SIGNIFICANT ISSUES
− Flight operations
− Installation
− Continued airworthiness
− Human factors

Appendix A – IVT Presentation Visuals A-110

Software Reuse - 219
October 29-30, 2003

SC-200/WG-60 “Module
Qualification” Concept

• “Module” is software, hardware,
or a combination of software
and hardware.

Software Reuse - 220
October 29-30, 2003

SC-200/WG-60 “Module
Qualification” Concept (cont)

Modular Avionics
Certification Plan

Module
Qual

Plan #1

Module
Qual

Plan #2

Module
Qual

Plan #n.

PSACs PHACs EQPs

PSACs PHACs EQPs PSACs PHACs EQPs

Appendix A – IVT Presentation Visuals A-111

Software Reuse - 221
October 29-30, 2003

SC-200/WG-60 “Module
Qualification” Concept (cont)

Modular Avionics Configuration &
Compliance Report

MQAS &
MCI
#1

MQAS &
MCI

#2

MQAS &
MCI

#n.

HASs &
HCIs

SASs &
SCIs

EQTRs

HASs &
HCIs

SASs &
SCIs

EQTRs HASs &
HCIs

SASs &
SCIs

EQTRs

Software Reuse - 222
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-112

Software Reuse - 223
October 29-30, 2003

Software Tool Research
Development Tools

• Embry-Riddle through FAA’s
Airworthiness Assurance Center of
Excellence

• Objectives:
− To establish a base for assessment of software

development tools
− To create a taxonomy and a set of

criteria/guidelines for tool selection and
qualification

− To perform an experiment collecting data using
selected development tools

• One more year remaining.

Software Reuse - 224
October 29-30, 2003

Software Tool Research
Verification Tools

• NASA Langley and Boeing Wichita
• Purpose is to develop effective

criteria for evaluating structural
coverage analysis tools for use on a
DO-178B project.

• One more year remaining.

Appendix A – IVT Presentation Visuals A-113

Software Reuse - 225
October 29-30, 2003

Software Tool Reuse

• Order 8110.49, Chapter 12 includes reuse
of tool qualification data within a company

• AC 20-RSC has a note which allows the AC
concept to apply to tools on a case-by-
case bases

• CAST is working on a tool reuse paper,
which will likely be the starting point for an
update to AC 20-RSC or a new AC on tool
reuse

Software Reuse - 226
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-114

Software Reuse - 227
October 29-30, 2003

Keys To Reuse Acceptance

• Ensure that communication among all
stakeholders is established.

• Ensure that the users (aircraft, engine,
and avionics manufacturers) have the
necessary data and expertise to
properly use the software.

• Ensure that all DO-178B objectives will
be met in the certified or authorized
project.

Software Reuse - 228
October 29-30, 2003

Keys To Reuse Acceptance
(cont)

• Evaluate installation, safety, operational,
functional, and performance concerns and
responses on all uses of reused software.

• Ensure that the developer has truly
planned for reuse rather than salvaging.

• Use additional resources to ensure that the
first acceptance is done well.

Appendix A – IVT Presentation Visuals A-115

Software Reuse - 229
October 29-30, 2003

Keys To Reuse Acceptance
(cont)

• Ask for help from specialists, when
needed.

• Ensure that the common reuse
concerns documented in section 12
of AC 20-RSC are addressed, as well
as any project-specific concerns.

Software Reuse - 230
October 29-30, 2003

Appendix A – IVT Presentation Visuals A-116

Software Reuse - 231
October 29-30, 2003

Summary

• Order 8110.49 addresses reuse of software life
cycle data within a company

• AC 20-RSC addresses reuse of software
components across company boundaries (when
the components are unchanged)

• COTS Research has been carried out and
focuses on the real-time operating system.

• OOT research has provided input for the
handbook
− OOTiA handbook slated for completion in June 2004

Software Reuse - 232
October 29-30, 2003

Summary (cont)

• Service History Research & Handbook
are available to support reuse but is a
difficult case to make.

• IMA intends to reuse data
− Hardware element TSO
− “Module qualification” concept being

proposed by SC-200/WG-60
• Reuse policy and guidance may apply to

tool qualification as well

Appendix A – IVT Presentation Visuals A-117

Software Reuse - 233
October 29-30, 2003

Summary (cont)

• Software can be safely reused if it is
well planned and carefully
implemented.

LIST OF ACRONYMS USED IN THE IVT

Appendix B

B-1

Acronyms Related “Software Reuse in Airborne Systems” IVT

AC Advisory Circular
ACO Aircraft Certification Office
AD Airworthiness Directive
API Application Programmer Interface
ARP Aerospace Recommended Practice
ASTC Amended Supplemental Type Certificate
ATC Amended Type Certificate
CAST Certification Authorities Software Team
CFR Code of Federal Regulations
CMR Certification Maintenance Requirement
COTS Commercial-off-the-shelf
CSTA Chief Scientific and Technical Advisor
DER Designated Engineering Representative
EQP Environmental Qualification Plan
EQTR Environmental Qualification Test Report
FAA Federal Aviation Administration
I/O Input/Output
IMA Integrated Modular Avionics
IVT Interactive Video Teletraining
HAS Hardware Accomplishment Summary
HCI Hardware Configuration Index
LRU Line Replaceable Unit
MA Modular Avionics
MCI Module Configuration Index
MQAS Module Qualification Accomplishment Summary
NASA National Aeronautics and Space Administration
OO Object-Oriented
OOA Object-Oriented Analysis
OOD Object-Oriented Design
OOP Object-Oriented Programming
OOT Object-Oriented Technology
OOTiA Object-Oriented Technology in Aviation
OOV/T Object-Oriented Verification/Testing
PR Problem Report
PHAC Plan for Hardware Aspects of Certification
PSAC Plan For Software Aspects Of Certification
REBOOT Reuse Based on Object-Oriented Technology
RMM Reuse Maturity Model
RSC Reusable Software Component
RTOS Real-Time Operating System
SAS Software Accomplishment Summary
SC Special Committee
SCI Software Configuration Index
SCM Software Configuration Management

B-2

SCMP Software Configuration Management Plan
SDP Software Development Plan
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SSA System Safety Assessment
SSH Software Service History
STC Supplemental Type Certificate
SVP Software Verification Plan
SW Software
TC Type Certificate
TSO Technical Standard Order
WAAS Wide Area Augmentation System
WG Working Group

EXERCISES TO BE USED IN THE IVT

Appendix C

C-1

Exercise 1
Describe some situations in your job where

you have seen salvaging and reusing. List
the situations below and be prepared to
discuss with the class.

Salvaging Reusing

Exercise 2
Scenario: Assume that you are an ACO

engineer involved in a project that will use
a COTS RTOS.

Question: What are some of the things you
would do in this situation?

C-2

Exercise 3
Scenario: Assume that you are an ACO

engineer involved in a project that
proposes to use product service history.

Question: What are some of the things you
would do in this situation?

Exercise 4
Question: Given the list of “common

certification concerns with reuse” what do
you think are some ways to address these
concerns in a safe manner?

C-3

Exercise 5
Scenario: Assume that you are an ACO

engineer working with a RSC developer of
an operating system that is designed to be
reusable.

Exercise: Using the tables in Appendix F of
your Participant’s Guide, list some of the
things you would consider as a
“regulator”.

Exercise 5 (cont)
Considerations (list here):

C-4

Exercise 6
Question: Review the sample acceptance

letter in Appendix H and compare it with
the suggested items listed in Section 10 of
AC 20-RSC. Are there any additional
things that you would include in the
letter? If so, list them below:

Chapter 12 of Order 8110.49

 APPROVING REUSED SOFTWARE LIFE
CYCLE DATA

Appendix D

D-1

FROM ORDER 8110.49, SOFTWARE APPROVAL GUIDELINES

CHAPTER 12. APPROVING REUSED SOFTWARE LIFE CYCLE
DATA

12-1. GENERAL. This chapter provides guidelines for determining if software life
cycle data, produced and approved for one certification project, can be approved on a
follow-on certification project. Approval for reuse could minimize the amount of rework
while maintaining an equivalent level of design assurance.

12-2. SOFTWARE SUITABLE FOR REUSE.

a. If properly planned and packaged, software life cycle data can be reused from
one project to the next, with minimal rework. For example, the software plans,
requirements, design, and other software life cycle data (as documented in a Software
Configuration Index) for a Global Positioning System (GPS) may originally be approved
on GPS #1 (the original certification project) and reused on GPS #2 (the subsequent
certification project). Sample items suitable for reuse include:

(1) Software plans and standards. These include software undergoing non-
substantive changes, such as:

• Program name,

• Name change due to consolidations or mergers, and

• Configuration changes for reasons other than design changes (for example, document

format change, drawing modifications, or documentation system changes).

(2) Tool qualification data. The FAA can approve reuse, if the tool is used
exactly as specified in the qualification approval as part of the original certification, and
the applicant has access to the tool qualification data. This is true even if some of the
features were qualified but not used during the original certification. The applicant
should ensure that the same version of the tools is being used as that supported by the
qualification data. The FAA will not approve reuse if the applicant uses additional or
different tool functionality than was previously qualified.

(3) Software libraries. The FAA can approve library sets in the original

certification project if the library set is used identically (that is, same library functions are
used the same way).

(4) Software requirements, design, code, verification procedures, and

verification results. The FAA may approve these for reuse after the applicant makes a
thorough change impact analysis. This is to confirm that the requirements, design, code,

D-2

procedures, and so forth are unaffected and unchanged from the previous certification
effort.

(5) Configuration items. These may be approved for reuse in their entirety,

if the certification authority and DERs use paragraphs 12-3 through 12-5 of this chapter
to make the determination, and the configuration of the software life cycle data has not
changed. Configuration item requirements verified at a higher level (that is, system
level) should be identified in the original configuration and reverified before reuse.

b. Projects not using RTCA/DO-178B may have additional considerations not
documented in this chapter. Certification authorities should evaluate them on a case-by-
case basis. The applicant should contact their local certification authority for guidance.
The certification authority should coordinate with the CSTA for Aircraft Computer
Software, the appropriate Directorate, and/or AIR-120, as necessary.

12-3. SAFETY CONSIDERATIONS. If the FAA finds software life cycle data
acceptable for reuse, no further design approval is required. Figure 12-1 illustrates the
considerations that govern whether the FAA will approve software reuse.

Figure 12-1. Reuse Approval Considerations

FAA may approve for reuse if:

1. There is no adverse effect on original system
safety margins, and

2. There is no adverse effect on original
operational capability UNLESS accompanied
by a justifiable increase in safety.

FAA will NOT approve for reuse if the reuse:

1. Adversely affects safety,
2. Exceeds a pre-approved range of data or

parameters, or
3. Exceeds an equipment performance

characteristic.

12-4. FACTORS AFFECTING REUSE.

a. Any of the software life cycle data in Section 11, RTCA/DO-178B is suitable
for reuse. To meet the guidelines in paragraph 12-5 of this chapter, the software life
cycle data should be unchanged, and should apply to the project for which reuse is being
considered.

b. In-service problems with previous applications can limit reuse. There may be

Airworthiness Directives or a manufacturer’s unresolved problem reports with the
previously approved system. The applicant needs to analyze all open manufacturer’s
problem reports to ensure that the reusable portion of the new software is not affected. If
the reusable portion of the new software is affected, changes to correct that software life
cycle data should be made or the software should not be used.

D-3

c. Applicants should determine if the software data apply to the subsequent
project’s development by assessing the similarity of both the operational environment
and the software development environment. They should:

(1) Assess the operational environment by evaluating the end-to-end
performance requirements and the operational safety assessment.

(2) Refer to the Software Life Cycle Environment Configuration Index in

Section 11.15, RCTA/DO-178B, when assessing the software development environment.

(3) Demonstrate that operational and development environments are the same,

or demonstrated to produce identical results as the previous certification.

(4) Assess any outstanding problem reports.

12-5. REUSE APPROVAL GUIDELINES.

a. The certification authority should ensure that the applicant has met the
following guidelines before granting certification credit for reused software life cycle
data:

(1) The software life cycle data have not changed since its previous approval.

(2) The software level of the software application(s) is equal to (or less than)

the software level of the original certification effort.

(3) The range and data type of inputs to the configuration item are equivalent

to its approved predecessor.

(4) The configuration item is embedded on the same target computer and is

used the same way operationally as the original certification project.

(5) Equivalent software/hardware integration testing and system testing were

conducted on the same target computer and system as in the original certification project.

(6) The applicant followed the safety considerations and reuse factors in

paragraphs 12-3 and 12-4 of this chapter.

(7) The software life cycle data and the rationale for reuse of each item are

documented in the “Additional Considerations” portion of the PSAC. The applicant’s
PSAC should include method of use, integration, and documentation for the reused
configuration item. The PSAC should be submitted as early as possible in the
development program. The applicant should also document all references to the project
previously certified and the project number, as applicable, in the PSAC.

D-4

b. The certification authority responsible for the subsequent certification should
review the PSAC and notify the applicant whether the proposal is acceptable or not (with
appropriate rationale).

ADVISORY CIRCULAR 20-RSC

 REUSABLE SOFTWARE COMPONENTS

Draft 9.2

Appendix E

AC 20-RSC

REUSABLE SOFTWARE COMPONENTS

DRAFT 9.2 – 9/24/03

Date: XXXXXXXX

9/24/03 AC 20-RSC

 E- i

TABLE OF CONTENTS
SECTION PAGE

1. PURPOSE. ... 1

2. BACKGROUND.. 2

3. RELATED DOCUMENTS... 2

4. DOCUMENT OVERVIEW.. 3

5. DISCUSSION... 4

6. GUIDELINES FOR THE RSC DEVELOPER. ... 5

7. DATA SUPPLIED TO THE RSC INTEGRATOR AND/OR APPLICANT. 8

8. GUIDELINES FOR THE INTEGRATOR AND APPLICANT USING THE
RSC. .. 10

9. EXPECTATIONS FROM CERTIFICATION AUTHORITIES ON THE
FIRST USE OF AN RSC. ... 12

10. THE RSC ACCEPTANCE LETTER... 13

11. EXPECTATIONS FROM CERTIFICATION AUTHORITIES ON THE
SUBSEQUENT USE OF AN ACCEPTED RSC. ... 14

12. COMMON SOFTWARE REUSE ISSUES... 15

13. CHANGES TO REUSABLE SOFTWARE COMPONENTS.................................... 19

14. CONCURRENT USE OF AN RSC. .. 22

APPENDIX 1 – DEFINITIONS OF TERMS...A1-1

APPENDIX 2 - ACRONYMS ..A2-1

APPENDIX 3 – SAMPLE FORMAT FOR RSC DEVELOPER’S TABLEA3-1

9/24/03 AC 20-RSC

 Page E-1

Subject:
REUSABLE SOFTWARE
COMPONENTS

Date: XXXXXXXX

AC No: 20-RSC

 Initiated By: AIR-120 Change:

1. PURPOSE.

 a. This advisory circular (AC) provides one acceptable means of compliance, but not
the only means, for use by reusable software component (RSC) developers, integrators, and
applicants to gain Federal Aviation Administration's (FAA) “acceptance” of a software
component that may be only a part of an airborne system’s software applications and
intended functions. Like all advisory material, this AC is not mandatory and does not
constitute a regulation. Because the means of compliance presented in this AC is not
mandatory, the term “must” used herein applies only to the applicants, integrators, and RSC
developers who choose to follow the method prescribed in this AC.

 b. This AC also shows a means to get credit for the reuse of a software component in
follow-on systems and certification projects, including receiving “full credit” or “partial
credit” for compliance to the objectives of RTCA/DO-178B, Software Considerations in
Airborne Systems and Equipment Certification. When all stakeholders comply with this AC
and no installation, safety, operational, functional, or performance concerns are identified by
the FAA (or authorized designee), the FAA may grant acceptance for the RSC. This
acceptance is accomplished by the issuance of an FAA RSC acceptance letter; the letter will
not be written until a certification or authorization is granted for a product or equipment
using the RSC. If the RSC is unchanged and meets the limitations stated in the RSC
acceptance letter, it may be reused without additional FAA review of the RSC data,
assuming no safety, installation, operational, functional, or performance concerns are
identified in the subsequent application(s). This AC requires that the RSC being considered
for acceptance have its own set of software life cycle data.

 c. This AC applies to the “acceptance” of an RSC to support the approval of airborne
systems and equipment related to the overall software aspects of those systems (including
the RSC integrated with the other system’s software and demonstrated to fully comply with
the applicable regulations, guidance, and RTCA/DO-178B objectives) related to type

AC 20-RSC 9/24/03

Page E-2

certificates (TC), supplemental type certificates (STC), amended supplemental type
certificates (ASTC), amended type certificates (ATC), and Technical Standard Order (TSO)
authorizations. For TSO authorized articles that are highly integrated into the aircraft or
that have aircraft dependencies, the RSC acceptance letter will typically not be granted until
the TSO authorized article and the RSC have received installation approval as part of a TC,
STC, ASTC, or ATC. This is necessary because of the aircraft system’s complexity and
aircraft-specific dependencies on installed systems and equipment.

2. BACKGROUND.

a. Economic incentives and advances in software component technology have made it
desirable to develop an RSC that can be integrated into a number of systems’ target
computers and environments with other system software applications, as determined by the
integrator and/or applicant. In these cases, a developer of an RSC may partially satisfy the
applicable RTCA/DO-178B objectives, while the integrator and/or applicant are responsible
for completing and demonstrating the compliance for the integrated software package,
systems aspects, and aircraft certification compliance activities. Examples of potential
RSCs include software libraries, operating systems, and communication protocols.

b. The guidance in this AC is needed to ensure that all applicable RTCA/DO-178B

objectives are met for systems that use RSCs.

NOTE: The reuse concept described in this AC may be applicable to verification and
development tools; however, the details of each reusable tool qualification project must be
discussed with the FAA. Tools differ from airborne software; therefore, there are some
additional concerns to be addressed, when attempting to reuse tool qualification data. The
FAA plans to specifically address tool reuse in future guidance.

3. RELATED DOCUMENTS.

 a. Code of Federal Regulations (CFR). Title 14 of the Code of Federal Regulations
parts 21, 23, 25, 27, 29, 33, and 35 are referenced throughout this AC. Copies of the CFRs
are available from the FAA website at http://www.airweb.faa.gov/rgl.

 b. FAA Advisory Circulars. AC 20-115B, RTCA, Inc., Document RTCA/DO-178B,
dated January 11, 1993, offers a way to obtain FAA approval of software. The intent of this
RSC AC is to provide guidance for applicants that use RTCA/DO-178B as their means of
showing compliance to the regulations for software components. This AC supplements
RTCA/DO-178B and AC 20-115B, for accepting compliance demonstration for some of the
RTCA/DO-178B objectives for individual components of a system’s software application
and functions. If an applicant proposes a means of compliance other than RTCA/DO-178B,
the FAA will decide whether this AC applies and whether additional policy or guidance is
warranted. You can obtain copies of this AC, AC 20-115B, and other ACs from the FAA
website at http://www.airweb.faa.gov/rgl.

9/24/03 AC 20-RSC

 Page E-3

 c. FAA Policy Documents. Federal Aviation Administration (FAA) Order 8110.4,
Type Certification (as amended), and Order 8110.49, Software Approval Guidelines, are
relevant to this AC. You can obtain copies of orders from the FAA website at
http://www.airweb.faa.gov/rgl.

 d. RTCA, Inc. Documents. You may purchase copies of RTCA documents from
RTCA, Inc., 1828 L Street, NW, Suite 805, Washington, D.C. 20036. Alternatively, copies
may be purchased on-line at http://www.rtca.org/. RTCA documents referenced in this AC
are:

(1) RTCA, Inc., Document RTCA/DO-178B, Software Considerations in Airborne
Systems and Equipment Certification, dated December 1, 1992.

(2) RTCA, Inc., Document RTCA/DO-248B, Final Report for Clarification of
DO-178B Software Considerations in Airborne Systems and Equipment Certification, dated
October 12, 2001.

e. SAE Documents. You may purchase copies of Society of Automotive Engineers
(SAE) documents from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001. Or,
copies may be purchased on-line at http://www.sae.org/. The following SAE documents are
relevant to this AC:

(1) Aerospace Recommended Practice (ARP) 4754, Certification Considerations
for Highly-Integrated or Complex Aircraft Systems.

(2) ARP4761, Guidelines and Methods for Conducting the Safety Assessment

Process on Civil Airborne Systems and Equipment.

4. DOCUMENT OVERVIEW. The following sections are included in this AC:

a. Sections 1 through 4 establish the context for this AC by providing background and
introductory information.

 b. Section 5 provides information and general guidelines for RSC acceptance.

c. Sections 6 through 8 provide guidelines for the RSC developers, integrators, and
applicants, when developing or using an RSC.

d. Sections 9 through 11 provide typical activities that the RSC developers, integrators,

and applicants can expect from the certification authorities for the first acceptance of an
RSC and its subsequent use.

e. Section 12 discusses common issues that must be addressed when developing and

using RSCs. These issues may affect multiple RTCA/DO-178B objectives. Section 12 does

AC 20-RSC 9/24/03

Page E-4

not present an exhaustive list of issues that may arise, since each project will have its own
specific issues.

f. Section 13 addresses changes to an RSC.

g. Section 14 considers concurrent uses of an RSC.

h. Appendix 1 defines the terms used in this AC. Please review this appendix prior

to reading the AC in order establish a consistent terminology.

i. Appendix 2 lists the acronyms used in this AC.

j. Appendix 3 provides a sample format of an RSC developer’s table.

5. DISCUSSION AND GENERAL GUIDELINES.

 a. The first acceptance of an RSC must be performed during an actual project (such as,
a TC, ATC, STC, ASTC, or TSO authorization project). This may require extra resources
from the RSC developer, the integrator, the applicant, and the certification authority.
Subsequent acceptance of the RSC for a different system or project will likely require less
effort and resources, if the guidelines in this AC are followed.

 b. This reuse guidance applies only when all the stakeholders (the applicant, integrator,
RSC developer, and certification authority) agree that the software component is reusable.
The RSC Plan for Software Aspects of Certification (PSAC) and the system-level PSAC of
the first applicant are the recommended vehicles for documenting the agreement of the
proposed means of compliance for the RSC to this AC in the context of the system and for
defining the communication channels and roles among stakeholders. Agreeing on the reuse
concept is important because the first applicant will likely use additional resources to
qualify the component as reusable. If there is no agreement, then the traditional approach to
software development and approval must be followed for all software in the system (see
Section 6 of this AC).

 c. Each RSC developer’s project will have different limitations, needs, and issues. For
example, one developer may package the software life cycle data so it fully satisfies a
particular objective of RTCA/DO-178B. Another RSC developer may only partially satisfy
that same objective. This may be due to some project-specific issues, or additional
coordination with the integrator to augment the efforts of the RSC developer. Sections 6
through 8 of this AC guide the RSC developer, integrator, and applicant. The guidelines are
meant to be flexible enough to satisfy the multiple needs of the RSC developer, integrator,
and applicant. However, the guidelines are also detailed enough to ensure that relevant
certification, compliance, and safety issues are addressed.

 d. Applicants are responsible for submitting compliance data, coordinating, and
communicating with certification authorities, and performing the certification liaison
process for the project. However, there may be some communication between the

9/24/03 AC 20-RSC

 Page E-5

certification authority and the RSC developer (with the applicant’s involvement) for the
reuse aspects of the project.

 e. It should be noted that acceptance of an RSC for one project does not guarantee
acceptance on a subsequent project. Installation, safety, operational, functional, and
performance considerations must be considered on each project. If concerns arise in any of
these areas, certification authorities may need to reassess RSC life cycle data. Additionally,
the compliance to all applicable RTCA/DO-178B objectives, guidance, and regulations
must be addressed by every applicant on their particular project.

 f. This AC was coordinated with international certification authorities; however,
international programs or approvals may require additional activities not addressed in this
AC. International projects should be closely coordinated with all applicable certification
authorities.

 g. The integrator and applicant should be aware that it is unlikely that an RSC can
satisfy all of the objectives of RTCA/DO-178B and are advised that they may need validate
RSC developer claims and provide additional resources for demonstrating compliance of
systems containing RSCs. The integrator and applicant should also be aware that the
communication paths and division of responsibilities can be complex, when using an RSC.

 h. The integrator and applicant should also be aware that there are other regulations,
guidance, and agreements that may be applicable for their system and its aircraft installation
approval beyond the guidance of RTCA/DO-178B. These may be dependent on the date of
application for the certification, the type of system which they are proposing, the
introduction of novel design or technology or methods, or other factors. The applicant is
responsible for demonstrating compliance of all components of their system, including
RSCs.

 i. It is recommended that the RSC developer, integrator, and applicant not propose
alternative means of compliance to the objectives of RTCA/DO-178B for the software
aspects of the initial approval or subsequent certification approvals of systems containing
RSCs. As described in Section 3.b of this AC, if an alternate means is proposed, this AC
may not be applicable.

6. GUIDELINES FOR THE RSC DEVELOPER. Prior to issuance of this AC, there
were no procedures for RSC developers to directly transfer their accepted data from one
project to the next and across company boundaries. Traditionally, RSC developers provided
substantiation in one of two ways. First, by resubmitting the RSC data package and
repeating the work for each system’s application. Second, by providing traceability through
the TC, ATC, STC, ASTC, or TSO approval back to the desired data and defending the
validity of their processes and data from the original approval basis to the new approval
basis for each system. This AC addresses the reuse of software components and software
life cycle data across company boundaries. The RSC developer must do the following:

AC 20-RSC 9/24/03

Page E-6

 a. Produce a PSAC for the RSC as early as possible in the project. The RSC PSAC
must:

• Include the information discussed in Section 11.1 of RTCA/DO-178B.
• Detail the RSC developer’s plans for satisfying each applicable RTCA/DO-178B

objective.
• Identify which objective(s) will not be satisfied and which objective(s) will be

partially satisfied by the RSC developer.
• Explicitly state the RSC developer’s agreement that the RSC is being developed

with the intent to reuse it in future projects.
• State the intent to comply with this AC.
• Define the failure conditions, safety features, protection mechanisms, architecture,

limitations, software level(s), interface specifications, and intended usage of the
RSC.

• Provide a description of the proposed certification liaison process (including
communication and coordination focal points) to all involved stakeholders.

 b. Consider and address, as applicable, the common reuse issues documented in
Section 12 of this AC.

 c. For each RTCA/DO-178B objective applicable to the software level, document the
information listed in items (1) to (4) below (in the RSC PSAC) with sufficient detail for
certification authority concurrence and integrator and/or applicant usage of the RSC. The
RSC developer may include this information in a table with columns for the objective
reference, objective description, amount of credit being sought (full, partial, or no credit),
assumptions, means of compliance, and remaining activities to be completed by the
integrator and/or applicant (see a sample format in Appendix 3). Since resource-specific,
target computer-specific, and system-specific issues may be uncertain early in the project,
the RSC PSAC may list preliminary information that will be updated in RSC PSAC
revisions and the RSC Software Accomplishment Summary (SAS), when the RSC is
completed. Some reuse details may not be finalized until the end of the project. The
following information must be thoroughly documented for each applicable RTCA/DO-178B
objective for review by certification authorities (and authorized designees) and for usage by
integrators and/or applicants:

 (1) Credit being sought for the objective. The RSC PSAC or referenced
document must specify if full, partial, or no credit is being sought for the objective. Full
credit is defined as being able to completely satisfy an objective using the RSC data package
and demonstrations that all associated assumptions are valid. If additional activity is
required by the integrator, then full credit cannot be claimed. This is true even when the
activities are fully specified by the RSC developer. Additionally, if the assumptions are not
satisfied by the integrator or applicant, no credit can be obtained.

 (2) Assumptions of the RSC developer on the behavior of the RSC users.
Provide sufficient justification to ensure that the original acceptance is valid if the
assumptions are satisfied. For example, the RSC developer may assume that the source

9/24/03 AC 20-RSC

 Page E-7

code, compiler type, and compiler options will remain the same. If, however, an integrator
or applicant does not meet these assumptions, reuse of the applicable objective credit will
not be allowed.

 (3) Means of compliance for the objective. The RSC PSAC and SAS must
document what software life cycle data supports compliance for each applicable objective
(document titles, version numbers, and/or a description of the type of data to be provided as
evidence of compliance).

 (4) Activities remaining for the integrator and/or applicant. The RSC PSAC
and SAS must document what an applicant and/or integrator must do to fully satisfy any
partial or unsatisfied objectives.

 d. Document the following safety-related items in the RSC PSAC and RSC SAS:

(1) The software level(s) for the RSC,

(2) An analysis of all interfaces and configurable parameters, which describes the

functional and performance effects of these parameters on the user and any mitigations
required by the user to ensure proper operation,

(3) Architectural and design features supporting any portion of the safety analysis,

partitioning, or other protection strategies,

(4) Any safety, operational, functional, or performance assumptions that support the

use of the RSC (see Section 6.e below), and

(5) Any new or novel concepts, methods, and technologies to be used in developing

the RSC.

 e. Additionally, the RSC developer must also produce an analysis of the RSC’s
behavior that could adversely affect the users’ implementation (for example, a vulnerability
assessment, partitioning analysis, hardware failure effects, requirements for redundancy,
data latency, and design constraints for correct RSC operation). The analysis may be used
to support the integrator and/or applicant’s safety analysis.

 f. Obtain agreement (as early as possible) by all stakeholders for the first application
by coordinating the RSC PSAC, any other RSC plans (e.g., Software Development Plan
(SDP), Software Verification Plan (SVP), Software Quality Assurance Plan (SQAP), and
Software Configuration Management Plan (SCMP)), and software development standards
(that is, requirements, design, and coding standards) with the certification authority,
designees (if delegated), and the applicant and/or integrator.

 g. Develop the RSC in compliance with the approved plans. As previously stated, the
RSC developer must produce the RTCA/DO-178B software life cycle data and
documentation identified in Section 7 of this AC for the RSC (such as, plans, standards,

AC 20-RSC 9/24/03

Page E-8

development data, verification data, quality assurance records, and configuration
management records).

 h. Inform the certification authority, designees (if delegated), integrator, and applicant
of both development progress and any deviations from plans, to allow for timely reviews
and adjustments as necessary.

i. Submit the RSC Software Configuration Index (SCI) and the RSC SAS to the
certification authority through the project applicant, when completed. The RSC SAS must
include or refer to the software life cycle data of RTCA/DO-178B, Section 11, and the
information discussed in Section 6 of this AC.

7. DATA SUPPLIED TO THE RSC INTEGRATOR AND/OR APPLICANT. The
RSC developer must supply the appropriate software life cycle data to the integrator and/or
applicant to support acceptance of the RSC in the context of the software aspects of
certification of the airborne system(s) using the RSC. Typically, the RSC developer
supplies the following data to the RSC integrator and/or applicant and to the certification
authority on request (all except for item i below):

a. The type design data listed in Section 9.4 of RTCA/DO-178B for the RSC (that is,
Software Requirements Data, Design Description, Source Code, Executable Object Code,
SCI, and SAS).

 b. The RSC PSAC, which identifies the credit sought for each RTCA/DO-178B
objective.

 c. Interface description data (for example, interface control document and porting
guide). The interface description data includes any hardware and software resource
requirements (such as, timing and memory) and applicable analyses, verification
procedures, and verification cases.

 d. Installation or integration procedures and limitations, sufficient to ensure that the
RSC will be properly used, integrated, and installed. They must be detailed enough to
identify unique aspects of the installation or integration. The limitations and procedures
must include, as a minimum:

(1) Equipment specifications required for proper operation and performance of the
RSC, including verification activities to be performed by the integrator and/or applicant to
ensure equipment specifications are met.

(2) A list of any RSC sub-components, as defined by RTCA/DO-178B Section

11.16.

(3) Instructions for periodic maintenance and calibration needed for continued

airworthiness once the software is installed on the target environment.

9/24/03 AC 20-RSC

 Page E-9

 e. Data to support the integrator and/or applicant’s completion of partially satisfied or
unsatisfied objectives. As an example, if partial credit is sought for objective 1 of
RTCA/DO-178B Table A-1 (Software development and integral processes are defined),
clearly define to the integrator and/or applicant what that partial credit entails and what they
need to do to complete the credit for the installation. The necessary data to support that
“full” or “partial” credit must also be made available to the integrator and/or applicant.

 f. Software verification results, verification cases, and verification procedures,
especially for that verification that must be repeated by the integrator or applicant in the
context of the integrated software installed on the target computer environment. Examples
of verification to be carried out by the integrator and/or applicant include data coupling
analysis, control coupling analysis, timing analysis, memory analysis, software integration
testing, hardware-software integration testing, and robustness testing of RSC functions,
including safety and protection features. The verification data should include a list of test
cases and procedures affected by any settable parameters. The integrator and/or applicant
should consider the total requirements for system and sub-system testing; within this context
the integrator and/or applicant should address:

(1) applicable credit for reusable tests of the RSC;

(2) re-test where new settings or parameters may affect the requirements, code,

function, performance, or protection features;

(3) analyses of data coupling and control coupling of the RSC, including guidance for

the integrator or applicant to facilitate the data coupling analysis and control coupling
analysis of the RSC integrated with the other airborne software components of their system;
and

(4) development of new test cases and procedures to complete all test and test

coverage analyses objectives, including guidance for the integrator or applicant to facilitate
demonstrating normal range and robustness testing and test coverage objectives for the
entire integrated airborne software.

 g. Open problem reports on the RSC and analysis of any potential functional,
operational, performance, and safety effects. The RSC developer should document this
information in the RSC SAS, and if the information is known at the beginning of the project,
include it in the RSC PSAC.

 h. The RSC developer must develop a data sheet for the RSC. This data sheet must
summarize RSC functions, limitations, analysis of potential interface safety concerns,
assumptions, configuration, supporting data, open problem reports, software characteristics,
and other relevant information in a concise manner that supports the integrator and/or
applicant’s use of the RSC. The data sheet must be submitted to the FAA and will be
attached to the FAA acceptance letter.

AC 20-RSC 9/24/03

Page E-10

 i. The following data-related items must also be addressed by the RSC developers
(although they may not result in submittals):

 (1) Any RTCA/DO-178B software life cycle data not listed above, but used in the
software development and approval process, must be made available to the applicant,
integrator, and certification authority (for example, Software Quality Assurance (SQA) and
Software Configuration Management (SCM) records).

 (2) Irrespective of any legal and proprietary issues and agreements about the
delivery of software life cycle data between the applicant and the RSC developer, the data
must be available to the certification authorities (and authorized designees) at all times for
their review and inspection. A process may be set up to make some data available to the
applicant without actually supplying the data to the applicant (for example, a data/software
escrow). This data must be accessible to the certification authority (and authorized
designees) to determine compliance, or in the event of safety or operational problems with
the target system (see 14 CFR § 21.277). The data may also need to be available to the
applicant, if the target system or RSC requires modification (reference 14 CFR § 21.301
through § 21.305, and FAA Order 8110.4).

 (3) Data needed to support changes to the RSC must be identified and maintained.
For example, if the developer goes out of business, this data will support continued
airworthiness and operational safety. 14 CFR, Part 21, Certification Procedures for
Products and Parts (as supplemented by FAA Order 8110.4, Type Certification (Chapters 2
and 3)), provides guidance for the issuance and preservation of type design data for
maintaining the continued airworthiness of aircraft products.

 (4) The RSC developer must retain and maintain a list of all integrators and
applicants buying or using their components to support continued airworthiness across
multiple products. The RSC developer and integrators/applicants must set up a process to
share in-service problem reports in support of operators required to comply with 14 CFR §
21.3, and in support of Sections 8.n and 8.o below. The RSC developer and user(s) must
develop an agreement to support continued airworthiness of the system(s) using the RSC.

8. GUIDELINES FOR THE INTEGRATOR AND APPLICANT USING THE RSC.
Sometimes the integrator and applicant are the same company or organization and
sometimes they are separate entities. The guidelines for the integrator and applicant are
listed below. The applicant is responsible for ensuring that these items are completed, even
if some of the tasks are actually performed by an integrator. The applicant and/or integrator
must perform the following for each RSC integrated into their system application:

 a. Integrate the RSC developer’s plans, documentation, limitations, compliance
statement, mapping to RTCA/DO-178B objectives, software approval approach, and other
relevant information (such as, RSC acceptance letter and data sheet) into their own software
life cycle data.

9/24/03 AC 20-RSC

 Page E-11

 b. Specify the RTCA/DO-178B software life cycle data needed from the RSC
developer that supports their project and continued airworthiness. This data is listed in
Section 7 of this AC.

 c. Produce a system-level PSAC (and/or equivalent certification plan) for the target
system, including the information outlined in RTCA/DO-178B, Section 11.1. The system-
level PSAC must include the integrator and/or applicant’s plans to address compliance with
all RTCA/DO-178B objectives, regulations, and guidance for the RSC and other software
components of the target system. Additionally, the system-level PSAC must explicitly state
the agreement that the RSC was developed with the intent to be reusable in other projects
and that they intend to comply with this AC.

 d. Produce other system-level software plans (such as, SDP, SCMP, SVP, and SQAP)
for their target system. Each plan must address the RSC integration and other software
components used. For example, the system-level SVP must cover the overall software
verification program, plus any verification required to integrate the RSC and other
components, and the credit proposed for the RSC developer’s verification.

 e. Evaluate the safety, operational, performance, and functional impacts of the issues
identified in the RSC developer’s PSAC, SAS, and safety analysis data; determine the
applicability and severity of these impacts on the specific application and system; determine
any additional impacts for the specific application; propose risk mitigation, system
architectural design features, protection mechanisms, and other assurance methods to
address those risks; and address all safety, operational, functional, and performance issues
during the development of the system.

f. Coordinate all plans and standards (as needed) with the certification authority and
designees (if delegated) to get agreement on the project.

 g. Follow the approved plans and standards. Should any deviations from the plans or
standards be necessary, those deviations should be coordinated with the certification
authority (and authorized designees) prior to implementation.

 h. Analyze open problem reports on the RSC (including development problem reports
and in-service problem reports), other software components, hardware, and system to ensure
that there are no safety, operational, functional, or performance effects from the RSC or
other components in the specific application and system.

 i. Validate that the assumptions for RTCA/DO-178B objective credit made by the RSC
developer in the RSC SAS are met. Demonstrate the applicability of the credit to the
integrated system that uses the RSC and complete the RTCA/DO-178B objectives that were
identified as “partial” or “no” credit in the RSC SAS. The applicant is responsible for
ensuring compliance to all applicable RTCA/DO-178B objectives for the integrated RSC.

 j. Evaluate and address the common reuse issues described in Section 12 of this AC
for the each particular application.

AC 20-RSC 9/24/03

Page E-12

 k. Validate and verify the throughput, timing, memory usage, resource usage, and other
resource items of the RSC and other installed software components for the specific target
environment.

 l. Keep the certification authority and designees (if applicable) informed of the project
status and approved plan deviations. This communication supports timely reviews by the
certification authority and/or designees (if applicable) and approval of changed plans.

m. Submit all SCIs, SASs, and other required software life cycle data to the certification
authority (that is, submit both system-level and RSC data). The system-level SAS must
include the information described in Section 11.20 of RTCA/DO-178B for the system’s
software. The system-level SCI and SAS must identify that the RSC has been included in
the applicant’s project, the configuration (including part numbers) of the RSC, the
configuration (and part numbers) of other software components, and the software life cycle
data configuration to support the RSC and other software components used in the system.
Additionally, the system-level SAS must include a description of how RTCA/DO-178B
objectives that were not fully met by the RSC developer have been completely satisfied by
the integrator and/or applicant for the entire integrated system.

n. Report in-service difficulties with the RSC to the RSC developer and the certification

authority who granted the acceptance letter.

o. For subsequent use of the RSC, investigate the in-service experience related to the

RSC to ensure that no safety-related problems connected with the RSC have been
experienced. Relevant information, such as problem reports available to the RSC developer,
must be evaluated for this purpose (see 7.i(4) above). Safety-related in-service experience
relative to the RSC must be communicated to the RSC developer and the certification
authorities.

p. Establish a legal agreement with the RSC developer regarding continued
airworthiness support, data ownership, and so forth, as required to meet the regulations.

9. EXPECTATIONS FROM CERTIFICATION AUTHORITIES ON THE FIRST
USE OF AN RSC. The RSC developer, integrator, and applicant should work closely with
the certification authority throughout the RSC development and integration. To gain
acceptance of an RSC in its first system installation, the certification authority will
typically:

 a. Coordinate and work closely with the applicant, integrator, and RSC developer to
ensure that they comply with the guidance of this AC.

 b. Involve directorate personnel, headquarters personnel, technical specialists, and
chief scientific and technical advisors (CSTAs), as needed, to address policy and technical
issues in the project.

9/24/03 AC 20-RSC

 Page E-13

c. Review the RSC developer, applicant, and/or integrator’s plans to ensure that the

applicable RTCA/DO-178B objectives, regulations, and guidance will be satisfied.

d. Perform on-site or desk reviews of the software life cycle data and the capability of
the RSC developer, applicant, and integrator, as needed, to ensure compliance to the
applicable RTCA/DO-178B objectives, guidance, and regulations.

e. Ensure that a process is established between the applicant and RSC developer to

address any continued airworthiness and in-service problems (see Sections 7.i(4), 8.n, 8.o,
and 11.h of this AC).

f. Approve data from the applicant, integrator, and RSC developer (as in a typical
software program) for the system software, when the stakeholders satisfactorily complete
their development and compliance activities.

10. THE RSC ACCEPTANCE LETTER. If this AC is followed, upon successful
certification of the product or authorization of the equipment using the RSC, the
certification authority will write an acceptance letter for the RSC and will submit it to the
RSC developer. A copy will be provided to the applicant and/or integrator. This letter
documents the initial acceptance of the RSC and its suitability for use in other certification
projects by other applicants and/or integrators. The acceptance letter typically includes:

 a. The RSC document numbers and revision levels approved (for example, the SCI
number and revision; the SAS number and revision; and any additional configuration
information not included in the SCI), and a general description of the RSC functionality and
target environment.

 b. The RSC developer’s name and contact information.

 c. The name and contact information of the original RSC applicant and/or integrator,
the airborne system and environment, and other relevant information pertaining to the initial
acceptance of the RSC.

 d. Assumptions made by the RSC developer during the acceptance, including a
reference to the RSC developer’s SAS. This must include assumptions for each applicable
RTCA/DO-178B objective. The assumptions must be sufficiently detailed that other
certification authorities, RSC integrators, and applicants could apply the information to
subsequent projects.

 e. Summary of technical or policy issues that arose during the initial acceptance and
how those issues were addressed.

 f. Summary of extra activities performed by the integrator and applicant to assure the
RSC for the initial system approval, including system bench and aircraft testing.

AC 20-RSC 9/24/03

Page E-14

 g. Contact information for the certification office that will address future questions
about the RSC acceptance and subsequent reuse.

 h. Software level of the RSC, any RSC limitations, and known installation, safety,
operational, functional, or performance issues of the RSC.

 i. RSC data sheet, as described in Section 7.h of this AC. A copy of the RSC data
sheet should be attached to the acceptance letter.

 j. Emphasis that acceptance of the RSC in one project is not approval in any other
project. Any subsequent user of the RSC must evaluate installation, safety, operational,
functional, and performance aspects of the RSC in their application. Additionally,
subsequent users of the RSC must evaluate complete compliance to all applicable
RTCA/DO-178B objectives, regulations, and guidance for the RSC and other components in
their system.

NOTE: Certification authorities may encourage RSC developers to document some or all
of the information listed in 10.a through 10.j in their data sheet and/or SAS. Therefore, the
certification authority can simply reference the data sheet and/or SAS in the acceptance
letter. In this case, the data sheet and/or SAS number, title, and revision level will be
included.

11. EXPECTATIONS FROM CERTIFICATION AUTHORITIES ON THE
SUBSEQUENT USE OF AN ACCEPTED RSC. When a previously accepted RSC is
submitted for subsequent reuse in another product/project or by another integrator or
applicant, the certification authority or the designee (if delegated) will:

 a. Review the RSC acceptance letter that documents the initial acceptance. This letter
may be obtained from the RSC developer or the certification authority office that originally
issued the acceptance.

b. Contact the certification office that performed the first acceptance (as documented in
the acceptance letter) to discuss project details and to address any questions or concerns.

c. Coordinate and work closely with the RSC applicant and integrator to ensure that
they follow this AC’s guidelines, address the common reuse issues in Section 12 of this AC,
and address any additional certification issues.

 d. Ensure that installation, safety, operational, functional, and performance aspects of
the RSC in the specific system have been analyzed and addressed.

e. Involve FAA Directorate personnel, headquarters personnel, technical specialists,
and/or CSTAs, as needed, to address policy and technical issues in the project.

f. Review the integrator and/or applicant’s plans to ensure: (a) the objectives of
RTCA/DO-178B will be satisfied; (b) other applicable regulations, guidance, and

9/24/03 AC 20-RSC

 Page E-15

agreements will be satisfied; and (c) the assumptions and requirements documented for the
RSC and for other software components used in the target system will be satisfied.

g. Perform, where deemed necessary, on-site and desk reviews of the integrator and/or
applicant’s data and organization’s capability (as needed). This ensures compliance to the
applicable RTCA/DO-178B objectives, regulations, guidance, and approved plans. It also
ensures compliance with the assumptions and requirements documented for the RSC and
other software components.

 h. Evaluate the in-service experience related to the RSC, as communicated in 8.n and
8.o above. Safety-related in-service experience and continued airworthiness concerns must
be addressed before accepting the new use of the RSC.

i. Accept the applicant and/or integrator’s data for the overall system software after
they satisfactorily complete the integration and compliance activities.

j. Inform the original certification authority of the subsequent software acceptance, and
report any issues that arose during the acceptance.

12. COMMON SOFTWARE REUSE ISSUES. There are several issues that may affect
the reuse of software components. Some of the most common issues are discussed below
(this is not an exhaustive list):

 a. Requirements definition.

 (1) RTCA/DO-178B discusses several types of requirements, including system
requirements, safety-related requirements, high-level requirements, low-level requirements,
and derived requirements. The RTCA/DO-178B discussion and objectives regarding
requirements were developed with a traditional federated system in mind. In the traditional
case, a single manufacturer is typically responsible for the software development and
integration. When RSCs and multiple stakeholders become involved in the software
assurance process, determining the levels of requirements may become more difficult.
Therefore, satisfying the RTCA/DO-178B objectives related to requirements requires
special attention.

 (2) Each RSC developer must establish a plan to satisfy the RTCA/DO-178B
objectives related to system, high-level, low-level, and derived requirements. It is unlikely
that the RSC developer will be able to satisfy RTCA/DO-178B objectives related to
traceability to and compliance and consistency with system requirements, nor will they
likely be able to “feed back” RSC derived requirements to the systems safety assessment
process to ensure there is no impact of design decisions on the system safety. This will
likely result in additional effort for the integrator and/or applicant. The RSC developer’s
means of addressing requirements must be clearly documented in the RSC PSAC and
adhered to by the integrator and/or applicant. The integrator/applicant’s means of
addressing requirements and the system safety assessment must be clearly documented in

AC 20-RSC 9/24/03

Page E-16

the system-level PSAC. Both plans should also be coordinated with the appropriate
certification authorities as early in the program as possible.

 b. Re-verification.

 (1) When an RSC is reused, the question of how much re-verification needs to be
performed often arises. Re-verification activities depend on the specific situation (such as,
same or different processor, same or different compiler, same or different compiler options,
and so forth). The RSC developer should document their overall verification (and re-
verification) plans in the RSC PSAC. Additional details should be provided in the RSC
SVP; however, the RSC PSAC should have sufficient detail for the certification authority to
determine that the approach will address the RTCA/DO-178B verification objectives. The
integrator and/or applicant will also need to address verification objectives in the system-
level plans. Some examples of verification objectives that cannot typically be satisfied by
the RSC developer and must be addressed by the integrator and/or applicant are:

• integration,
• software integration testing,
• hardware-software integration testing,
• requirements-based test coverage,
• timing analysis,
• memory analysis,
• stack analysis,
• data coupling analysis,
• control coupling analysis,
• robustness testing,
• partitioning and other protection mechanisms integrity validation, and
• any installation-specific testing such as system bench testing, aircraft

ground and flight testing, and flight test pilot and human factors
specialists evaluations of flight deck effects.

 (2) Some common re-verification questions to be considered are (not an
exhaustive list):

• How much re-verification is required if a different compiler type or

optimization is used?
• How much re-verification is required if a different target environment

(microprocessor, memory management unit, timers, memory,
input/output devices, databuses, etc.) is used?

• How is data coupling and control coupling analyses performed in the new
system for the entire application?

• What re-verification or additional verification is required to integrate the
RSC with other software components into the overall system?

• How much structural coverage analysis should be repeated if the target
system changes?

9/24/03 AC 20-RSC

 Page E-17

• How much re-verification is needed for run-time and compiler libraries?
• If a new target environment is used, what kind(s) of resource issues exist

(for example, are there non-deterministic, dynamic memory allocation
algorithms with the RSC that could create resource (such as, memory and
execution time) issues in the new target environment)? If resource issues
do exist, how will re-verification be carried out?

• If a new target environment is used and structural coverage changes (that
is, there are different unreached code sections), how will the unreached
code be addressed? How will it be assured that deactivated code cannot
be inadvertently activated in the new system?

 c. Interface. The RSC developer must provide interface data. This data must
explicitly define what activities are required by the integrator and/or applicant to ensure that
the RSC will function according to its requirements. Typical items included in interface
data are:

• configuration parameters
• restrictions on tools
• additional verification activities
• memory and timing requirements
• external resources required by the RSC for proper functioning and

performance
• definition of the communication mechanisms between the RSC and other

software programs and the communication protocols with hardware
components

• accessible variables and their characteristics
• variables and data required from the system and their characteristics (for

example, inputs to RSC)
• bus and input/output ports and devices
• access mechanisms

 d. Partitioning and protection. Although partitioning and protection will most likely
be a function at the system level, the RSC itself may require some partitioning and
protection. For example, there may be some maintenance code that is at a different software
level than the operational flight program for the RSC. In some cases, the RSC might have
specific protocols that facilitate protection and partitioning. These should be documented
and evaluated by the integrator, applicant, and certification authorities.

 e. Data coupling and control coupling analyses. Data coupling and control coupling
and the degree of dependency of data and control interchanges between the RSC and other
integrated software and hardware components must be carefully addressed to ensure that all
potential side effects of data modifications are fully identified and verified. Each side effect
should be analyzed to ensure there is no adverse effect on functionality or performance. For
example, all modifications of RSC data should only occur at defined interfaces where the
data behavior can be fully controlled by the RSC.

AC 20-RSC 9/24/03

Page E-18

 f. Using qualified tools. If qualified tools are used to develop and/or verify the RSC,
reuse of those tools must be considered during the RSC development and acceptance.
RTCA/DO-178B, Section 12.2 provides additional information on the tool qualification
process and the supporting documentation.

 (1) When qualified tools are used for the development and/or verification of an
RSC, the Tool Qualification Plan and the Tool Accomplishment Summary (or PSAC and
SAS for verification tools) must document any portions of the tool qualification that are to
be completed by the applicant. For example, test procedures and cases might have some
target dependencies and additional verification must be performed by the integrator and/or
applicant.

NOTE: Some developers have found that packaging the qualification data
for each tool helps with reuse. For example, each verification tool used
with an RSC might have its own Tool Qualification Plan, Tool Operational
Requirements, and Tool Accomplishment Summary.

 (2) The following tool qualification data must be provided to the applicant for all
tools used in obtaining acceptance of the RSC:

(a) All tool plans,

(b) Tool Operational Requirements, and

(c) The Tool Accomplishment Summary. For some verification tools the Tool

Accomplishment summary may be included in the RSC SAS.

 (3) All tool data not listed in Section 12.f.(2) of this AC must be available for
review by the applicant and certification authority (and authorized designees), as needed, to
support continued airworthiness.

 g. Deactivated code. Any information about deactivated code and the associated
deactivation mechanisms must be identified by the integrator and/or applicant. Since the
RSC may have many features to satisfy a broad audience, an approach to tailor the RSC to
the specified requirements of an applicant’s application is typically needed. This could
result in sections of deactivated code that must be addressed as part of the overall software
approval process.

 h. Traceability. A number of RTCA/DO-178B objectives address the traceability of
system requirements, high-level requirements, low-level requirements, derived
requirements, code, and test cases and procedures. When multiple stakeholders and
multiple components are involved, this traceability becomes more difficult. Traceability
must be addressed and maintained between the RSC, the system software, and the system.

 i. Robustness. Since the RSC is developed for use in a variety of applications, it must
be developed to anticipate out-of-range data or unexpected input; i.e., it must be developed

9/24/03 AC 20-RSC

 Page E-19

to be robust. The robustness must be verified through robustness tests during the RSC
development and during the integration of the RSC. Stakeholders must document how they
plan to address robustness aspects of the RSC.

13. CHANGES TO REUSABLE SOFTWARE COMPONENTS.

 a. RSCs will likely change at some point in time. When an RSC is changed, the
original reuse status will no longer apply to the changed component (i.e., the acceptance
letter cannot be used for the modified RSC). If the stakeholders desire to change a
previously accepted RSC, the software component must be modified using the guidelines of
this AC (see Sections 13.b through 13.f) and RTCA/DO-178B Section 12.1 and re-accepted
as part of an actual project.

 b. When an RSC is changed, a change impact analysis must be performed to identify
the changed and affected aspects of the software. The change impact analysis should follow
a defined process to determine the potential impact of the change on continued operational
safety of the aircraft and to determine the impact of the change to the previously accepted
RSC. The following items should be addressed by the change impact analysis, as
applicable:

 (1) Traceability analysis identifies areas that could be affected by the software
change. This includes the analysis of affected requirements, design, architecture, code,
testing and analyses, as described below:

 (a) Requirements and design analysis identifies the software requirements,
software architecture, and safety-related software requirements impacted by the change.
Additionally, the analysis identifies any additional features and/or functions being
implemented in the system, assures that added functions are appropriately verified, and
assures that the added functions do not adversely impact existing functions.

 (b) Code analysis identifies the software components and interfaces impacted
by the change.

 (c) Test procedures and cases analysis identifies specific test procedures and
cases that will need to be reexecuted to verify the changes and any potential impacts of the
changes, identifies and develops new or modified test procedures and cases (for added
functionality or previously deficient testing), and assures that there are no adverse effects as
a result of the changes. The absence of adverse effects may be verified by conducting
regression testing at the appropriate hierarchical levels (such as aircraft flight tests, aircraft
ground tests, laboratory system integration tests, simulator tests, bench tests,
hardware/software integration tests, software integration tests, and module tests), as
appropriate for the software level(s) of the changed software.

 (2) Memory margin analysis assures that memory allocation requirements and
acceptable margins are maintained.

AC 20-RSC 9/24/03

Page E-20

 (3) Timing margin analysis assures that the timing requirements, central
processing unit task scheduling requirements, system resource contention characteristics,
interface timing requirements, and acceptable timing margins are maintained.

 (4) Data flow analysis identifies changes to data flow and coupling between
components and assures that there are no adverse impacts.

 (5) Control flow analysis identifies changes to the control flow and coupling of
components and assures that there are no adverse impacts.

 (6) Input/output analysis assures that the change(s) have not adversely impacted
the input and output (including bus loading, memory access, and hardware input and output
device interfaces) requirements of the product.

(7) Development environment and process analyses identify any change(s),
which may adversely impact the software application or product (for example, compiler
options or versions and optimization change; linker, assembler, and loader instructions or
options change; or software tool change).

 (8) Operational characteristics analysis ensures that changes (such as changes to
gains, filters, limits, data validation, performance, interrupt and exception handling, and
fault mitigation) do not result in adverse effects.

 (9) Certification maintenance requirements (CMR) analysis determines whether
new or changed CMRs are necessitated by the software change.

 (10) Partitioning/protection analysis assures that the changes do not impact any
protective mechanisms incorporated in the design.

NOTE: The above list is not all-inclusive and depends on the product for
which the modification is being made.

 c. The change impact analysis should determine whether the change to the RSC could
adversely affect safe operation of the system or product. The following are examples of
areas that could have an adverse impact on installation, safety, operations, functionality, or
performance:

 (1) Safety-related information is changed. For example:

 (a) Previous hazards, identified by the system safety assessment, are changed.

 (b) Failure condition categories, identified by the system safety assessment, are
changed.

 (c) Software levels are changed, particularly if the new software level is higher
than the previous level.

9/24/03 AC 20-RSC

 Page E-21

 (d) Safety-related requirements, identified by the system safety assessment, are
changed.

 (e) Safety margins are reduced.

 (2) Changes to operational or procedural characteristics of the aircraft that
could adversely affect flight safety. For example:

 (a) Aircraft operational or airworthiness characteristics are changed.

 (b) Flight crew procedures are changed.

 (c) Pilot workload is increased.

 (d) Situational awareness, cautions, warnings, and alerts are changed.

 (e) Displayed information which is used to make flight decisions is changed.

 (f) Assembly and installation requirements are changed.

 (g) Equipment interchangeability and/or interoperability with other equipment is
changed.

 (h) CMRs are changed or added.

 (3) New functions or features are added to the existing system functions that
could adversely impact flight safety or operations.

(4) Processors, interfaces, and other hardware components or the environment
are changed in such a way that safety, operations, functionality, or performance could
be adversely affected (see RTCA/DO-178B, Section 12.1.3).

(5) Software life cycle data (requirements, code, and architecture) is
significantly changed in such a way that it could adversely affect safety, operations,
functionality, or performance. For example:

 (a) Changes to software requirements, design, architecture, and code
components (especially those affecting safety-related functions, partitioning, redundancy or
safety monitors).

 (b) Changes to code (source, object, and executable object) components that
perform a safety-related function or changes to a component providing input to a
component, which performs a safety-related function. (For this AC, a safety-related
function is one that could potentially induce or allow a major, hazardous, or catastrophic
failure condition to go undetected).

AC 20-RSC 9/24/03

Page E-22

 (c) Changes to characteristics of the development environment impacting the
executable object code.

 (d) Changes to memory allocation requirements so that memory margins are
adversely impacted (for example, less than 5 percent margin remaining).

 (e) Changes to timing requirements so that timing margins are adversely
impacted (for example, margins are unpredictable or less than 10 percent margin remains).

 (f) Changes to input/output requirements (such as bus loading) so that input or
output performance is adversely impacted (for example, less than 5 percent margin
remains).

 (g) Data and control coupling characteristics are adversely impacted (for
example, to the extent that more than 50 percent of the coverage analysis must be redone).

 (h) Changes to interface characteristics.

 d. Additionally, the following items should be identified in the change impact analysis:

 (1) Updates needed to ensure that the software change(s) is incorporated in the
appropriate software life cycle data, including requirements, design, architecture, source and
object code, and traceability.

 (2) Verification activities needed to verify the changes and that there are no
adverse effects on the system. The change impact analysis should cover how changes that
could adversely affect safe operation of the system or aircraft will be verified, so the
changed and unchanged software will continue to satisfy their requirements for safe
operation. These verification activities may include reviews, analyses, regression testing,
requirements-based testing, flight testing, and so on, including reevaluation of existing
analyses, reexecution of existing tests, and new test procedures and cases (for added
functionality or previously deficient testing).

 e. When the applicant or integrator makes changes to the RSC without the RSC
developer’s assistance, that integrator or applicant becomes responsible for satisfying the
applicable RTCA/DO-178B objectives for the RSC and all other components of the system.

 f. Changes to an RSC as a result of an airworthiness directive (AD) must be coordinated
with the RSC developer, users of the RSC, and the appropriate certification authority to
determine how the AD applies to other projects. An AD issued on any system containing an
RSC may invalidate that RSC as reusable.

14. CONCURRENT USE OF AN RSC.

9/24/03 AC 20-RSC

 Page E-23

 a. Sometimes an RSC may be developed for use by concurrent projects. The
development of the RSC and the multiple applications using the RSC may progress at the
same time. In this situation, the RSC developer must create a “Reuse Plan” (or equivalent
document) which typically includes:

(1) Known applications and projects that will use the RSC (including the first
applicant). Not all future users may be known when the Reuse Plan is written; therefore, the
plan should document plans, procedures, and policies for working with the future users and
certification authorities.

(2) The schedule for the multiple applications and projects.

(3) A proposed reuse approach, based on this AC’s guidance and the specific project
needs. The Reuse Plan should thoroughly address this AC. The reuse approach should also
propose a way to efficiently utilize FAA and designee resources. For example, shared
reviews and review reports may be proposed to optimize resources of FAA and applicants.

(4) A list of all data items (with specific configuration identification) being
developed for each user.

(5) A summary of which data items will be the same for all integrators and/or
applicants and which data items are user-specific.

(6) An explanation of data items that differ among users (these may not be suitable
for reuse).

(7) A list of affected applicants and certification offices. (Note: In some cases the
list of applicants may be proprietary data that can only be shared with the certification
authority. Therefore, the list of affected applicants may be documented in a separate
document to share with certification authorities only.)

(8) A description of how users will be enabled to use the product correctly (for
example, a user’s guide or interface document).

(9) A description of how the users will be kept up-to-date during the development
and deployment of the product. For example, describe how the integrators and/or applicants
will be informed of problems found with the RSC, potential safety issues, and other relevant
reporting processes.

 (10) Statement of the intent to follow this AC.

 (11) A description of how potential changes to the RSC will be addressed, as they
are required.

 b. The Reuse Plan must be coordinated by the RSC developer with all appropriate
certification authorities, applicants, and integrators. All stakeholders must agree on the

AC 20-RSC 9/24/03

Page E-24

approach for concurrently using the RSC. Typically, the FAA office that will likely have
first approval of a project using the RSC will serve as the focal for the Reuse Plan.

David W. Hempe
Manager, Aircraft Engineering Division
Aircraft Certification Service

9/24/03 AC 20-RSC

 Page E-A1-1

APPENDIX 1 – DEFINITIONS OF TERMS

For purposes of this AC, the RTCA/DO-178B Annex B definitions and the following definitions
apply:

a. Access mechanism is the manner in which a software component is called upon to
perform its intended function. This includes invocation mechanisms and data flow to and from
the component. This is typically part of the interface description data.

b. Applicant is the manufacturer seeking certification of the product or authorization of the
equipment. The applicant may be applying for a TC, STC, ATC, ASTC, or TSO authorization.

c. Certification Authority is the organization or person responsible within the state or
country for the certification of compliance with the requirements. The certification authority is
typically the FAA or foreign certification body engineer.

d. Credit is compliance to one or more RTCA/DO-178B objectives supported by
RTCA/DO-178B software life cycle data. This compliance is used to show that the certification
basis has been met and the equipment may receive a certificate. This AC makes reference to
three types of credit:

(1) Full credit – fully meets the RTCA/DO-178B objective and requires no further
activity by the applicant and/or integrator.

(2) Partial credit – partially meets the RTCA/DO-178B objective and requires
additional activity by the user to complete compliance.

(3) No credit – does not meet the RTCA/DO-178B objective and must be completed by
the user for compliance.

e. Designee is a person who is authorized to make compliance findings on behalf of the

FAA for the specific project.

f. Documentation configuration is the numbering and revision status used to identify the

configuration of documents used in the development process.

 g. First use of RSC is the first acceptance of an RSC in a certification project.

 h. In-service difficulty is a problem found during in-service experience.

 i. In-service experience is experience gained while the RSC is used in a certificated aircraft
or engine.

j. In-service problem report is the documentation of an in-service difficulty.

AC 20-RSC 9/24/03

Page E-A1-2

k. Installation procedures are procedures used to install the reusable software component.
These might be documented in the porting description data, interface description data, or similar
data.

l. Integrator is the manufacturer responsible for integrating the reusable software

component into the target computer and system with other software components.

m. Interface description data identifies the interface details of the reusable software

component. It is provided by the RSC developer to the integrator and/or applicant. The
interface description data should explicitly define what activities are required by the integrator
and/or applicant to ensure that the RSC will function in accordance with its approval basis.

n. Maintenance code is code residing in a airborne computer-based system that interfaces

with an onboard maintenance computer or computer used by maintenance personnel. The
function of this code is usually to report to the maintenance computer any problems detected
during normal operations.

o. Porting description data is data that contains assumptions and limitations on the reuse

of the component that must be followed by the user, installer, and/or integrator to ensure correct
functioning of the component in a new environment.

p. Reusable software component (RSC) is the software, its supporting RTCA/DO-178B

software life cycle data, and additional supporting documentation being considered for reuse.
The component designated for reuse may be any collection of software, such as, libraries,
operating systems, or specific system software functions.

q. RSC developer is the manufacturer of the RSC.

r. RSC user is an integrator and/or applicant who use the RSC.

s. Settable parameters are software component data that are set before execution of the

component.

t. Software characteristics include the Executable Object Code size, timing and memory

margins, resource limitations, and the means of measuring each characteristic (reference Section
11.20(d) of RTCA/DO-178B).

u. Software component is some part of the airborne system’s software. It is usually

defined as performing specific functions within the system.

v. Software life cycle data is data produced during the software life cycle to plan, direct,

explain, define, record, or provide evidence of successful completion of activities (see
RTCA/DO-178B, Section 11.0). Sections 11.1 through 11.20 of RTCA/DO-178B describe
different kinds of software life cycle data.

9/24/03 AC 20-RSC

 Page E-A1-3

w. Stakeholders are all the persons and groups involved in the development, integration,
and acceptance of the RSC. Stakeholders in this AC are the RSC developer, integrator,
applicant, and certification authority. One or more manufacturers may assume the roles of the
RSC developer, integrator, and applicant.

x. Subsequent use of RSC is the follow-on use of an accepted RSC. That is, it is not the

first use of the RSC.

y. Target computer is the physical processor that will execute the program while airborne.

z. Target computer environment is the target computer and all its support hardware and

systems needed to function in its actual airborne environment.

aa. Target environment is the same as target computer environment (above).

bb. User – see “RSC user” above.

cc. Variables are named memory locations that contain data that will change during

software execution.

AC 20-RSC 9/24/03

 Page E-A2-1

APPENDIX 2 - ACRONYMS

 The following acronyms are used in this AC:

AC Advisory Circular
AD Airworthiness Directive
ARP Aerospace Recommended Practice
ASTC Amended Supplemental Type Certificate
ATC Amended Type Certificate
CFR Code of Federal Regulations
CMR Certification Maintenance Requirement
CSTA Chief Scientific and Technical Advisor
DER Designated Engineering Representative
FAA Federal Aviation Administration
PSAC Plan For Software Aspects Of Certification
RSC Reusable Software Component
SAS Software Accomplishment Summary
SCI Software Configuration Index
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SDP Software Development Plan
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
STC Supplemental Type Certificate
SVP Software Verification Plan
TC Type Certificate
TSO Technical Standard Order

AC 20-RSC 9/24/03

 Page E-A3-1

APPENDIX 3 – SAMPLE FORMAT FOR RSC DEVELOPER’S TABLE

DO-
178B Obj

Objective Description Credit
Sought

Assumption

Means of Compliance for
the Objective

Activities Remaining For
Integrator/Applicant

1-1 Software development and
integral processes activities
are defined.

Note 1

Note 2

Note 3

Note 4

1-2 Transition criteria, inter-
relationships and sequencing
among processes are defined.

Note 1

Note 2

Note 3

Note 4

1-3 Software life cycle
environment is defined.

Note 1 Note 2 Note 3 Note 4

1-4 Additional considerations are
addressed.

Note 1 Note 2 Note 3 Note 4

1-5 Software development
standards are defined.

Note 1 Note 2 Note 3 Note 4

ETC.

NOTE 1: Include if FULL, PARTIAL, or NO credit is being sought for the RSC. See Section 6.c(1) of this AC.

NOTE 2: List all assumptions made for the credit claim. See Section 6.c(2) of this AC.

NOTE 3: List data that documents the compliance to this objective. See Section 6.c(3) of this AC.

NOTE 4: List the activities remaining for the integrator and/or applicant to complete the objective. This should be in enough detail
that the integrator and/or applicant and the certification authority can clearly understand what remains for the overall acceptance of the
system using the RSC. See Section 6.c(4) of this AC.

EXAMPLE CONSIDERATIONS FOR
EACH DO-178B OBJECTIVE FOR

REUSABLE SOFTWARE COMPONENTS

Appendix F

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-1

EXAMPLE REUSE CONSIDERATIONS FOR EACH
DO-178B OBJECTIVE

This paper summarizes the DO-178B objectives and some potential reuse issues/considerations
specific to each objective. The considerations differ for the reusable software component
developer, the integrator/applicant, and the certification authority. These issues/considerations
are only examples and will need to be addressed on a program-by-program basis. Each program
will have its own unique issues/considerations.

Note 1: In the tables below, the acronym RSC is used to abbreviate reusable software
component. RSCD stands for RSC developer.

Note 2: For the certification liaison objectives (10-1, 10-2, and 10-3), the considerations vary
depending if the RSC is a first-time approval or a follow-on approval.

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-2

Obj # Objective Description Example Considerations for

reusable component developers
Example Considerations for
Integrators/Applicants

Example Considerations for regulators

1-1 Software development and
integral processes activities are
defined. 4.1 a, 4.3

• Create PSAC and other planning
documents for reusable software
components (RSCs) to conform to
AC 20-RSC requirements.

• Document assumptions, credit,
compliances, and remaining
activities for each objective.

• Integrate references to RSC plans,
SCI, SAS, data sheet, interface data,
and other data.into system-level
plans.

• Coordinate reusable requirements
specified in RSC PSAC into system-
level plans.

• Address how objectives not met or
partially met by the RSC will be
completed.

• Review the RSC PSAC and plans with the
system-level PSAC and plans for
consistency, conformance to DO-178B, and
conformance with the guidelines of AC 20-
RSC.

• Provide early agreement on the proposals for
reuse specified in RSC developer and
integrator/applicant PSACs.

• Ensure conformance to the provisions of AC
20-RSC for all planning documents including
PSACs.

• Ensure that all technical issues not addressed
by guidance are coordinated with directorate,
headquarters, technical specialists and the
CSTA.

1-2 Transition criteria, inter-
relationships and sequencing
among processes are defined.
4.1b, 4.3

• Since some of the objectives may
not be complete for RSC,
interface/integration data and the
data sheet should specify the
transition criteria between the RSC
developer and the user.

•

• Integrate transition criteria for the
acceptance of the components and
SW life cycle data from the RSC
developer into the planning
documents for integrator/applicant.

• Review the integrator/applicants planning
documents in conjunction with the RSC
developer’s interface/integration data to
ensure consistency of the transition criteria

1-3 Software life cycle environment
is defined. 4.1c

• RSC developer ensures that any
life cycle environment needed to
complete the objectives or to
interface to the RSC is defined in
the interface/integration data.

• Include any changes to the RSC
developers life cycle environment
definition needed to integrate the
RSC into the final product.

• Ensure that the integrator/applicant correctly
integrated the needed components in their
life cycle environment from the requirements
of the RSC.

1-4 Additional considerations are
addressed. 4.1d

• Any additional activities required
to complete satisfaction of
requirements for the RSC for
additional considerations should be
included as part of the SAS, data
sheet, and interface/integration
data.

• Ensure that any requirements for
additional considerations in the
SAS, data sheet, and/or
interface/integration data are
integrated into the planning
documents to include the PSAC.

• Review the RSC’s SAS, data sheet, and
interface/integration data and the
integrator/applicant’s PSAC to ensure that all
additional considerations are acceptable
within the framework of existing guidance or
agreements.

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-3

1-5 Software development
standards are defined. 4.1e

• Any SW standards (e.g. calling,
naming conventions etc) that must
be followed by the
applicant/integrator to ensure that
the objectives of DO-178 that have
been satisfied are not compromised
should be included in the
interface/integration data.

• Incorporate any required standards
from the RSC developer’s
interface/integration data into
existing standards structures.

• Ensure that any requirements for standards
adherence in the RSC developer’s SAS, data
sheet, and/or interface/integration data are
incorporated in the planning documents of
the integrator/applicant.

1-6 Software plans comply with
this document. 4.1f, 4.6

• No unique requirements • No unique requirements • Ensure that the planning documents of both
the RSC developer and the
applicant/integrator meet this objective.

1-7 Software plans are coordinated.
4.1g, 4.6

• No unique requirements • The integrator/applicant is
responsible for ensuring that any
coordination between the RSC
developer and themselves are
coordinated.

• Examine the integrator/applicant plans with
the interface data, data sheet, and SAS
requirements and ensure that all requirements
have been addressed.

2-1 High-level requirements are
developed. 5.1.1a

• RSC developer should propose
their high level requirements.
These may not map to the
integrator/applicant’s high level
requirements.

• The integrator/applicant should
define the high level requirements
for the overall system. Some type of
reference or mapping should be
proposed to the component high-
level requirements.

• If not all of the RSC developer’s
high-level requirements are used,
they should be addressed. One
approach would be to consider them
as deactivated code.

• Make sure that the RSC developer, applicant,
and integrator address the high-level
requirements mapping, as addressed in the
previous two columns.

2-2 Derived high-level
requirements are defined.
5.1.1b

• No unique requirements • Identify any RSC requirements that
do not map to the system-level
requirements.

• Ensure that derived requirements of
RSC are passed to the system safety
assessment process.

• Since the RSC developer cannot know which
of their requirements are derived
requirements, careful evaluation of the
integrators/applicants categorization of the
RSC requirements will be required to ensure
that all derived requirements have been
addressed

2-3 Software architecture is
developed. 5.2.1a

• Fully define the RSC’s
architectural requirements for the
using system (e.g. timing,
protection/partitioning, memory,
interrupts etc.).

• Ensure that the RSC developer’s
architecture is compatible with the
system-level architecture

• Ensure that the integrator/applicant has
evaluated the architecture for compatibility
with the RSC architecture.

2-4 Low-level requirements are
developed. 5.2.1a

• No unique requirements • The integrator/applicant should map
the low level requirements to their
high and low level requirements to

• Ensure that requirements are developed.

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-4

ensure the completeness of all of the
low level requirements.

2-5 Derived low-level requirements
are defined. 5.2.1b

• Identify all derived requirements to
be passed up to the
applicant/integrator’s safety
assessment process.

• Address the low-level derived
requirements identified by the RSC
developer at the project level.

• Ensure that derived requirements of
RSC are passed to the system safety
assessment process.

• Ensure that all the applicant/integrator has
addressed all of the low level requirements
for the system.

2-6 Source Code is developed.
5.3.1a

• No unique requirements • The integrator/applicant should
ensure that all of the source code is
complete.

• Look for evidence that the
integrator/applicant has properly accounted
for the RSC source code.

2-7 Executable Object Code is
produced and integrated in the
target computer. 5.4.1a

• The RSC developers should
identify the requirements for
producing or integrating their
object code into a target computer
in the interface/integration data.

• The integrator should ensure that
their build procedures are
compatible with the RSC
developer’s interface/integration
data.

• Follow RSC developers
assumptions.

• Ensure that the integrator applicant has
evaluated the provisions of the
interface/integration data dealing with
producing object code in the target computer.

3-1 Software high-level
requirements comply with
system requirements. 6.3.1a

• Will be difficult to know what the
system requirements will be.

• If reuse is from a previous certified
system and the systems
requirements are the same for the
reuse functionality then previous
compliance may be used.

• Responsible to comply with this
objective in the context of the
system.

• RSC developer’s high level
requirements may not be integrators
high level requirements.

• If the integrator/applicant determines that
the RSC developer established compliance
then the integrator/applicant must justify this
determination.

• Possible to see requirements implemented
that are extraneous to the system. Should be
handled as deactivated.

3-2 High-level requirements are
accurate and consistent. 6.3.1b

• Clearly define in their verification
plan what parts of this objective
have been met by their verification
process.

• Expect Unambiguous, Sufficiently
detailed, and ‘Not conflict with
each other’ to be met by RSC
developer.

• Expect the accuracy of requirements
to be based in part on the system
requirements.

• Responsible to complete compliance
with this objective.

• If some or all of RSC developer’s
high-level requirements are
integrators/applicants low-level
requirements then RSC developer’s
data may be used for objective 4-2.

• Expect compliance data to come from both
the RSC developer and the
integrator/applicant.

3-3 High-level requirements are
compatible with target
computer. 6.3.1c

• Could provide data that will be
used by the integrator/applicant to
show compliance.

• If reuse from a previously certified
system and the systems are

• Responsible for compliance with
this objective

• If some or all of RSC developer’s
high-level requirements are
integrators/applicants low-level

• If compliance is based on both RSC
developer’s and integrator/applicant’s data
then system architecture and target processor
need to be considered in evaluating RSC
developer’s data.

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-5

system and the systems are
sufficiently similar then it is
possible to partially meet this
objective. Note: the system
architecture plays a role as well as
the actual target processor.

integrators/applicants low-level
requirements then RSC developer’s
data may be used for objective 4-3.

3-4 High-level requirements are
verifiable. 6.3.1d

• Target processor and system
architecture play a role in meeting
this objective.

• If some or all of RSC developer’s
high-level requirements are
integrators/applicants low-level
requirements then RSC developer’s
data may be used for objective 4-4.

• If this is a simple set of questions that rely on
Engineering judgement and the RSC
developer did the judging, then must
establish that the architecture of the system
the RSC developer used is sufficiently close
to the real system architecture to yield the
correct answer.

3-5 High-level requirements
conform to standards. 6.3.1e

• Must conform to the standards
established in their plans

• Can use RSC developer’s standards
for any high-level requirements that
match the RSC developer’s high-
level requirements.

• Must conform to standards
established in their plans for high-
level requirements they develop.

• If some or all of RSC developer’s
high-level requirements are
integrators/applicants low-level
requirements then RSC developer’s
data may be used for objective 4-5.

• Can see two standards for high-level
requirements.

3-6 High-level requirements are
traceable to system
requirements. 6.3.1f

• Same as 3-1 • Same as 3-1 • Same as 3-1

3-7 Algorithms are accurate. 6.3.1g • Possible to define the accuracy and
behavior aspects of an algorithm
and find compliance to those
definitions.

• Must ensure the RSC developer’s
defined accuracy and behavior
match the actual required accuracy
and behavior.

• If some or all of RSC developer’s
high-level requirements are
integrators/applicants low-level
requirements then RSC developer’s
data may be used for objective 4-7.

• Expect integrator/applicant to justify use of
RSC developer’s data.

4-1 Low-level requirements comply
with high-level requirements.

• Responsible for their low-level
requirements complying to their

• Responsible for their low-level
requirements complying to their

• Possible to see requirements implemented
that are extraneous to the system. Should be

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-6

6.3.2a high-level requirements high-level requirements

• Must ensure that the RSC
developer’s high-level requirements
mesh into the systems requirements.

handled as deactivated.

4-2 Low-level requirements are
accurate and consistent. 6.3.2b

• Responsible for their low-level
requirements

• Responsible for their own low-level
requirements

• Must ensure that RSC developer’s
low-level requirements do not
conflict with their low-level
requirements.

• Determine that integrator/applicant was able
to ensure no conflict exists between any of
the low-level requirements regardless of the
origin of the requirement.

4-3 Low-level requirements are
compatible with target
computer. 6.3.2c

• May supply data for conformance

• If software must run on a specific
target computer then can do this

• Must comply with this objective for
all low-level requirements in the
system.

• May use data from RSC developer,
if can demonstrate that it is
pertinent.

• If RSC developer data is used, then need to
determine that the context of RSC
developer’s work is appropriate for the
system

4-4 Low-level requirements are
verifiable. 6.3.2d

• Responsible for their low-level
requirements

• Responsible for their low-level
requirements

• Ensure the objective is met

4-5 Low-level requirements
conform to standards. 6.3.2e

• Responsible for their low-level
requirements conforming to their
standards

• Responsible for their low-level
requirements

• Will probably see two requirement’s
standards

4-6 Low-level requirements are
traceable to high-level
requirements. 6.3.2f

• Responsible for their low-level
requirements tracing to their high-
level requirements

• Traceability must be done within the
context of the system

• Any requirements from RSC
developer not traced to higher levels
of the system must be treated as
deactivated

• Expected to see deactivated functionality.

4-7 Algorithms are accurate. 6.3.2g • Responsible for the algorithms in
their low-level requirements

• Responsible for the algorithms in
their low-level requirements

• Ensure the objective is met

4-8 Software architecture is
compatible with high-level
requirements. 6.3.3a

• Supply architectural description of
their software to integrator

• Will have to do the work to meet
this objective

• Ensure the objective is met

4-9 Software architecture is
consistent. 6.3.3b

• Can do this for their part of the
architecture

• Must do this for their architecture

• Must ensure that RSC developer’s
work is appropriate and that RSC
developer’s architecture is

• Ensure the objective is met

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-7

consistent for the entire system

4-10 Software architecture is
compatible with target
computer. 6.3.3c

• May supply data for conformance

• If software must run on a specific
target computer then can do this

• Will have to do the work to meet
this objective

• May use data from RSC developer,
if can show appropriate

• If RSC developer data is used, then need to
determine that the context of RSC
developer’s work is appropriate for the
system.

4-11 Software architecture is
verifiable. 6.3.3d

• Can do this for their part of the
architecture

• Responsible for this system-wide • Ensure the objective is met

4-12 Software architecture conforms
to standards. 6.3.3e

• Can do this for their part of the
architecture

• Responsible for their part of the
architecture

• Expect two standards for architecture
definition

4-13 Software partitioning integrity
is confirmed. 6.3.3f

• Many require a partitioning
analysis for a partitioned RSC.

• Should document assumptions
regarding partition (e.g., number
and size of partitions).

• In many cases compliance with this
objective will be entirely the
responsibility of the
integrator/applicant.

• If the RSC implements some
partitioning, the integrator/applicant
will verify the partitioning integrity
of the integrated RSC.

• Review the partitioning analysis

5-1 Source Code complies with
low-level requirements. 6.3.4a

• Responsible for their part • Responsible for their part • Ensure the objective is met

5-2 Source Code complies with
software architecture. 6.3.4b

• Responsible for their part • Responsible for their part

• Must do this work for the interfaces
between the RSC developer’s code
and the integrator/applicant’s code

• Ensure the objective is met

5-3 Source Code is verifiable.
6.3.4c

• Responsible for their part • Responsible for their part • Ensure the objective is met

5-4 Source Code conforms to
standards. 6.3.4d

• Responsible for their part • Responsible for their part • may see two coding standards – on for the
RSC and one for the application using the
RSC.

5-5 Source Code is traceable to
low-level requirements. 6.3.4e

• Responsible for their part • Responsible for their part • Ensure the objective is met

5-6 Source Code is accurate and
consistent. 6.3.4f

• Responsible for their part • Responsible for their part • Ensure the objective is met

5-7 Output of software integration
process is complete and correct.
6.3.5

 • Most likely that compliance with
this objective will be entirely the
responsibility of the
integrator/applicant

• Ensure the objective is met

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-8

6-1 Executable Object Code
complies with high-level
requirements. 6.4.2.1, 6.4.3

 • Most likely that compliance with
this objective will be entirely the
responsibility of the
integrator/applicant

• Ensure the objective is met

6-2 Executable Object Code is
robust with high-level
requirements. 6.4.2.2, 6.4.3

 • Most likely that compliance with
this objective will be entirely the
responsibility of the
integrator/applicant

• Ensure the objective is met

6-3 Executable Object Code
complies with low-level
requirements. 6.4.2.1, 6.4.3

• Responsible for their part • Responsible for their part • Ensure the objective is met

6-4 Executable Object Code is
robust with low-level
requirements. 6.4.2.2, 6.4.3

• Responsible for their part • Responsible for their part • Ensure the objective is met

6-5 Executable Object Code is
compatible with target
computer. 6.4.3a

• Provide sufficient information,
procedures, and computations to
allow the integrator/applicant to
establish timing and memory
margins in the integrated system.

• Provide procedures to evaluate
target-specific issues related to the
reusable components..

• Provide procedures to integrate
timing and memory data from
reusable components into system
level timing and memory.

• Typically no credit could be granted to the
software RSC developer for this objective,
since it is target specific.

7-1 Test procedures are correct.
6.3.6b

• Responsible for any tests they
perform that will be used by
integrator/applicant for compliance

• Responsible for their tests, including
tests to integrate the RSC

• Ensure the objective is met

7-2 Test results are correct and
discrepancies explained. 6.3.6c
Specific to executable object
code.

• Responsible for any tests they
perform that will be used by
integrator/applicant for compliance

• Responsible for their tests

• RSC developer’s testing must have
been done against an executable that
will be in the actual airborne
executable. Care must be taken that
the tools used by the RSC developer
to create executable code from
source produced the executable that
will be airborne.

• There will be configuration control issues
with respect to the executable code tested and
the executable code that will be airborne

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-9

7-3 Test coverage of high-level

requirements is achieved.
6.4.4.1

• Can do this to the high-level
requirements they defined. May be
used by integrator/applicant is
those requirements are his high-
level requirements.

• Most likely that compliance with
this objective will be entirely the
responsibility of the
integrator/applicant

• Ensure the objective is met

7-4 Test coverage of low-level
requirements is achieved.
6.4.4.1

• Responsible for their low-level
requirements testing

• Responsible for their tests • Ensure the objective is met

7-5 Test coverage of software
structure (modified
condition/decision) is achieved.
6.4.4.2

• May be able to receive credit on
the source code aspects of MC/DC
but will not be able to get credit for
the traceability from object code to
source code.

• If target processor and compiler are
same as applicant’s then object
code to source code traceability
may have meaning

• Evaluate the RSCD’s MC/DC
approach for the specific
application.

• Carry out the source-to-object code
traceability for the specific target.
Must justify using any RSC
developer’s data

• See Objective 7-2 for additional
integrator/applicant considerations

• Ensure the objective is met

7-6 Test coverage of software
structure (decision coverage) is
achieved. 6.4.4.2a, 6.4.4.2b

• Can receive credit for any decision
coverage achieved through their
requirements based testing

• See Objective 7-2 for additional
integrator/applicant considerations

• Ensure the objective is met

7-7 Test coverage of software
structure (statement coverage)
is achieved. 6.4.4.2a, 6.4.4.2b

• Can receive credit for any
statement coverage achieved
through their requirements based
testing

• See Objective 7-2 for additional
integrator/applicant considerations

• Ensure the objective is met

7-8 Test coverage of software
structure (data coupling and
control coupling) is achieved.
6.4.4.2c

• Can receive credit for any software
structure (data coupling and control
coupling) coverage achieved.

• Expect integrator/applicant to show
coverage of all data and control
coupling as related to the interfaces
to the RSC developer’s sofware.

• See Objective 7-2 for additional
integrator/applicant considerations

• Be aware that deactivated code may be more
likely in reuse situations

• Ensure that the data coupling and control
coupling analyses for the interface with the
RSC is addressed

8-1 Configuration items are
identified. 7.2.1

• No unique requirements. • Ensure that all of the RSC
configuration items are incorporated
in the configuration identification
scheme for the final product.

• Ensure that the integrator/applicant has
referenced the proper RSC configuration
identification and correct revisions.

8-2 Baselines and traceability are
established. 7.2.2

• Ensure that specific baselines and
releases are identified for the
integrator/applicant. Care should
be exercised to ensure that a

• Incorporate the baseline and
releases into the product
configuration.

• Establish that the RSC baseline has a fully
defined approval basis to include open
objectives, problem reports, data sheet, and
interface/integration data. Ensure that all

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-10

traceable baseline is established for
reusability.

items are consistent for a given reusable
baseline.

8-3 Problem reporting, change
control,
change review, and
configuration status accounting
are established. 7.2.3, 7.2.4,
7.2.5, 7.2.6

• Provide an interface to enable the
tracking of problem reports
encountered by the
integrator/applicant.

• Develop procedure to accommodate
problems on the reusable
components.

• Evaluate open problem reports and
in-service problems of the RSC to
ensure that no safety issues are
present in the installation.

• Evaluate the traceability of system and
integrator/applicant problem reports through
to the RSC developer. Track a problem
report through both systems.

• Ensure that all open problem reports are
evaluated for their potential impact on safety.

8-4 Archive, retrieval, and release
are established. 7.2.7

• Establish independently controlled
archive and retrieval procedures to
achieve maximum reusability
credit.

• Archive the required portions of the
RSC data per DO-178B and AC 20-
RSC

• Ensure that the archive, retrieval, and release
procedures are consistent with the level of
reuse being provided to the RSC developer.

8-5 Software load control is
established. 7.2.8

• No unique requirements. • No unique requirements • No unique requirements

8-6 Software life cycle environment
control is established. 7.2.9

• No unique requirements • Provide for any additional controls
needed as a result of actions and
tools required from the RSC.

• Evaluate the integrator/applicant’s evaluation
of the integration of any RSC tools and
procedures.

9-1 Assurance is obtained that
software development and
integral processes comply with
approved software plans and
standards. 8.1a

• No unique requirements • No unique requirements • Objective compliance will have to be shown
at both sites.

9-2 Assurance is obtained that
transition criteria for the
software life cycle processes
are satisfied. 8.1b

• No unique requirements. • No unique requirements. The
transition criteria should already
have implemented for the RSC
elements.

• Objective compliance will have to be shown
at both sites.

9-3 Software conformity review is
conducted. 8.1c, 8.3

• The software conformity review
will have to accommodate the
incompleteness of the data.
However, this should be readily
specified as part of the SAS and/or
data sheet.

• Credit can be taken for the partial
software conformity review done by
the RSC developer.

• Objective compliance will have to be shown
at both sites. The software conformity
reviews will have to be evaluated for
completeness to ensure that nothing was
missed in the overlap between the RSC
developer and the integrator/applicant.

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-11

10-1
FIRST
TIME

Communication and
understanding between the
applicant and the certification
authority is established. 9.0

• Jointly coordinate with the FAA
and applicant/integrator.

• Consider future applications of the
RSC when assigning a software
level.

• Facilitate coordination of FAA and
RSCD, as appropriate.

• Assure that the software level of the
RSC is compatible with the system
safety analysis for the specific
application.

• Provide timely response to RSC plans.
• Involve appropriate FAA specialists.
• Inform designees of expectations.
• Assess overall compliance of the DO-178B
• Assure the assumptions are valid and there

have been no changes to data.
• Assure validity of the SSA.

10-1
FOLLO
W ON
TIMES

Communication and
understanding between the
applicant and the certification
authority is established. 9.0

• Jointly coordinate with the FAA
and applicant/integrator.

• Consider future applications of the
RSC when assigning a software
level.

• Facilitate coordination of FAA and
RSCD, as appropriate.

• Assure that the software level of the
RSC is compatible with the system
safety analysis for the specific
application.

• Provide timely response to RSC plans.
• Involve appropriate FAA specialists.
• Inform designees of expectations.
• Assess overall compliance of the DO-178B
• Assure the assumptions are valid and there

have been no changes to data.
• Assure validity of the SSA.

10-2
First
Time

The means of compliance is
proposed and agreement with
the Plan for Software Aspects
of Certification is obtained. 9.1

• Any changes unique to the RSC
should be incorporated in the RSC
PSAC. The RSC PSAC should
address any additional
considerations unique to the RSC
such as the interface/integration
data and data sheet, any
assumptions required to ensure
portability of objectives between
different instances of reuse, and
overall approach for reuse.

• PSAC should express the intent to
follow AC 20-RSC

• The PSAC should address the issue
of previously developed software
and the overall approach for
certification.

• PSAC should express the intent to
follow AC 20-RSC

• Structure the approval of the PSACs with
two separate letters. One for the RSC
developer and one for the integrator
applicant. The integrator applicant will get
both letters.

10-2
FOLL
OW
ON
TIME
S

The means of compliance is
proposed and agreement with
the Plan for Software Aspects
of Certification is obtained. 9.1

• For a given change, the RSC will
have to provide any changes to the
PSAC to any integrator applicant
for which the change is intended.
However the approval is required
from only one applicant.

• PSAC should express the intent to
follow AC 20-RSC

• It is recommended that the RSC
PSAC be updated to address
deviations, since it will be reused.

• If the change is previously approved
the integrator/applicant is still
required to submit a PSAC or other
documentation specifying the
change and its associated impact. If
the RSC DO-178B objectives have
been approved for the changes the
associated approval documentation
should be referenced.

• PSAC should express the intent to
follow AC 20-RSC

• The FAA should not consider change
proposals directly from the RSC developer
without an associated STC, TC, TSO change
request (either major or minor). The impact
of the change should be reviewed on each
system incorporating the change even though
the DO-178B objectives of the RSC have
been approved.

10-3
First
Time

Compliance substantiation is
provided. 9.2

• The compliance substantiation is
provided in accordance with the
assumptions specified in the RSC
PSAC. The accomplishment
summary should provide all the

• The accomplishment summary for
the integrator/applicant will need to
identify the accomplishment
summary and other life cycle data
from the RSC developers. Any

• Ensure that the RSC developer documents
credit for each DO-178B objective and
remaining activities in the SAS.

• Ensure that the applicant/integrator shows
how they complete objectives where partial

E X A M P L E R E U S E C O N S I D E R A T I O N S F O R E A C H D O - 1 7 8 B O B J E C T I V E

F-12

assumptions needed to ensure that
the objectives are transferable to a
new use/application without further
reevaluation.

•

objectives remaining from the RSC
should be identified and the
associated integrator/applicant data
supporting their satisfaction should
be specified. DO-178B section 11.f,
h, and k will require special
treatment for reusability. Reference
to the interface/integration data and
data sheet will be required

or no credit were claimed by the RSC
developer.

• Ensure that all DO-178B objectives are met
for the application.

• Ensure that the integrator/applicant followed
the RSC developer data, assumptions, and
limitations. If additional limitations were
found, those should be addressed.

10-3
Follow
ON

Compliance substantiation is
provided. 9.2

For a given change, the RSC will have
to provide any changes to the
Accomplishment Summary and
Software Configuration Index to any
integrator applicant for which the
change is intended. Any data needed to
subtantiate an approval will also have to
be provided. However the approval is
required from only one applicant.

If the change is previously approved the
integrator/applicant is still required to
submit an Accomplishment Summary
and Software Configuration Index and
the change’s associated impact. If the
RSC DO-178B objectives have been
approved for the changes the associated
approval documentation should be
referenced as appropriate.

The FAA should not consider approving the
changes directly from the RSC developer without
an associated STC, TC, TSO change approval
request (either major or minor). The impact of
the change should be reviewed on each system
incorporating the change even though the DO-
178B objectives of the RSC have been approved
as part of another project.

SAMPLE DATA SHEET FOR A
RESUABLE SOFTWARE COMPONENT

Appendix G

Safety Critical
Products
GHS “Customer”
Operating System
Certification Data
Sheet

Function Name Signature Date
Software Engineering x
CM y
SQA z
ST&V u
Certification v

Document Control Information
Number: IN-IXX245-0001-CUSTCDS
Date:

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 2 of 16

Table of Contents

1 Introduction... 3
1.1 Purpose.. 3
1.2 Scope... 3
1.3 Abbreviations.. 3
1.4 Referenced Documents ... 4

1.4.1 Internal Documentation .. 4
1.4.2 External Documentation ... 4

2 Environment Description .. 5
3 Timing Performance ... 6

3.1 Method .. 6
3.1.1 API Execution Times.. 6
3.1.2 Partition Switch Execution Time .. 8

4 Memory Usage.. 9
4.1 Methods... 9
4.2 Memory Usage Results ... 9

4.2.1 C Library Memory Usage ... 9
4.2.2 INTEGRITY-178B Memory Usage ... 9

5 Stack Usage... 11
5.1 Method .. 11
5.2 Stack Usage Results.. 11

6 Restrictions ... 12
6.1 INTEGRITY-178B API.. 12
6.2 Number of AddressSpaces.. 12
6.3 Number of Tasks per AddressSpace ... 12
6.4 Number of Kernel Objects per AddressSpace .. 12

7 Integrator Considerations for Mitigating Partition Breaches.................................... 13
7.1 Intra-Partition Considerations... 15

Referenced Tables

Table 1. Test Environment.. 5
Table 2. Timing Analysis for INTEGRITY-178B API Calls ... 6
Table 3. Partition Switch Timing.. 8
Table 4. C Library Memory Usage ... 9
Table 5. INTEGRITY-178B Memory Usage ... 9
Table 6. AddressSpace Limits .. 12
Table 7. Partition Breach Considerations ... 13

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 3 of 16

1 Introduction

1.1 Purpose

This data sheet contains performance results for the Green Hills Software’s
(GHS) Safety Critical Products (SCP). The document also lists known limitations.

1.2 Scope

This data sheet is applicable to GHS Safety Critical Products described in this
document. The performance measurements are limited to the hardware platform
described in Section 2. The performance results are from the software verification
results described in Safety Critical Products GHS “Customer” Operating System
Software Verification Results [1].

This data sheet includes sections describing:

• Environment.
• Timing, memory usage, and stack usage performance.
• Limitations.
• Integrator considerations for mitigating partition breaches.

1.3 Abbreviations

API Application Programming Interface
ASP Architecture Support Package
BAT Block Address Translation
BSP Board Support Package
ELF Extensible Linking Format
CM Configuration Management
DMA Direct Memory Access
EDAC Error Detection and Correction
ELF Executable and Linking Format
GHS Green Hills Software
IEC International Electrotechnical Commission
ISO International Organization for Standardization
JTAG Joint Test Action Group
NA Not Applicable
OS Operating System
PPC PowerPC
SCI Software Configuration Index
SCP Safety Critical Products
SQA I Software Quality Assurance
SEU Single Event Upset
SRD Software Requirements Document

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 4 of 16

ST&V Software Test and Verification
SVR Software Verification Results
TBR Time Base Register
TLB Translation Lookaside Buffer
usec microseconds

1.4 Referenced Documents

1.4.1 Internal Documentation

[1] Safety Critical Products GHS “Customer” Operating System Software
Verification Results
IN-IXX245-0001-CUSTSVR

[2] Safety Critical Products INTEGRITY-178B Common Kernel Software
Requirements Document
IN-NNNNNN-0002-INCSRD

1.4.2 External Documentation

None.

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 5 of 16

2 Environment Description

The results represented in this data sheet are based on the environment defined in
Table 1.

Table 1. Test Environment

Item Description Configuration Identification
Hardware
Platform

“Customer” Platform DO-IXX245-0001-CUSTtf

Processor PPC 8245 NA
Clock Speed 200 MHz NA
Software SCP INTEGRITY-178B

Software Configuration
Index for GHS “Customer”
Operating System

Includes:
• C Library
• Common Kernel
• PowerPC ASP

IN-IXX245-0001-CUSTSCI

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 6 of 16

3 Timing Performance

3.1 Method

The INTEGRITY-178B Timing Analysis consists of collecting the following types of
data:

1) API execution times.
2) Partition Switch execution time.

3.1.1 API Execution Times

The API execution times are worst-case execution times derived from the INTEGRITY-
178B API Test Cases and Procedures. This provides the worst-case blocking terms for
invoking the APIs. These numbers may be used by the end user to verify/confirm their
system level timing requirements and for determining the worst case partition switch time
(see Section 3.1.2). Therefore, timing is only collected for APIs that “trap” into the
kernel (i.e., those that are non-preemptable).

The timing data was collected/analyzed using the following process:
A. <Details Omitted>.

Table 2. Timing Analysis for INTEGRITY-178B API Calls

Section API Call
Time2,5

(usec)
Task Synchronization CreateHighestLockerSemaphore 2.3
 CreateSemaphore 2.5
 GetSemaphoreValue (HighestLocker) 2.2
 GetSemaphoreValue (Counting) 1.9
 ReleaseSemaphore (HighestLocker) 3.16
 ReleaseSemaphore (Counting) 2.5
 TryToObtainSemaphore (HighestLocker) 2.6
 TryToObtainSemaphore (Counting) 2.7
 WaitForSemaphore 3.26
Synchronous CommunicationSynchronousSend 2.16,7
 SynchronousReceive 3.96,7
 TrySynchronousSend 2.06
Clocks and Alarms CreateVirtualClock 2.1
 GetClockAlarm 3.0
 GetClockAlarmOverruns 2.7
 GetClockPermissions 2.2
 GetClockResolution 2.6
 GetClockTime 2.5

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 7 of 16

Section API Call
Time2,5

(usec)
 SetClockAlarm 1.4
 SetClockTime 2.6
 GetClockName 3.6
Memory Management GetMemoryRegionAddresses 2.0
Task Management CurrentTask N/A1
 HaltTask 2.1
 RunTask 3.76
 ExitTask 2.5
 YieldTask 2.7
 GetMaximumPriorityAndWeight 2.0
 SetPriorityAndWeight 2.96
 GetPriorityAndWeight 3.2
 GetActivePriority 2.3
 RaiseCurrentTaskPriority 3.3
 LowerCurrentTaskPriority 3.16
 GetTaskStatus 2.8
 Yield N/A3
 Exit N/A4
 GetTaskStackLimits 2.5
 SetTaskStackPointer 2.3
 GetTaskStackPointer 2.0
 SetTaskProgramCounter 2.5
 GetTaskProgramCounter 2.8
 GetTaskRegister 2.6
 SetTaskRegister 2.8
 SetTaskIdentification 2.4
 GetTaskIdentification 2.5
 SetTaskStatusNotificationMask 2.7
 GetTaskStatusNotificationMask 2.7
 ResetActivity 3.3
IO Devices GetIODeviceOverruns 2.8
 ReadBlockFromIODevice N/A8
 ReadSubBlockFromIODevice 3.0
 ReadIODeviceRegister 2.0
 ReadIODeviceStatus 2.1
 WriteBlockToIODevice N/A8
 WriteSubBlockToIODevice 2.7
 WriteIODeviceRegister 2.4
 WriteIODeviceStatus 3.2

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 8 of 16

1 <Notes omitted>.

3.1.2 Partition Switch Execution Time

The Partition Switch execution time is the worst case time measured in the Partition
Switch Timing SVC plus the worst case blocking term for the partition switch to occur.
This SVC collected the partition switch execution time using the following process:
A. <Details omitted>.

Table 3. Partition Switch Timing

Worst Case Measured
Partition Switch Time

Worst Case Measured
API/Exception execution
time

Total Worst Case
Partition Switch Time

1.1us 3.9us (SynchronousReceive
API)

5.0 us

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 9 of 16

4 Memory Usage

4.1 Methods

INTEGRITY-178B is a set of libraries that are linked with the application code to
obtain an executable image. The data associated with the memory analysis was
generated by creating “null” main programs in both kernel and virtual
AddressSpaces and linking them into an executable image. The map file was then
analyzed to determine the amount of memory used by INTEGRITY-178B.

The C libraries are Executable and Linking Format (ELF) object archives. This
means that objects within the archive that are not used by the user code are not
included in the final linked executable. In order to perform a full memory
analysis, the C Library archives have to be converted to a single linkable object,
which preserves all unused objects. The analysis build then uses this newly
generated object file to generate the memory analysis information.

4.2 Memory Usage Results

4.2.1 C Library Memory Usage

Table 4 shows the total memory usage of the C Libraries.

Table 4. C Library Memory Usage

Memory Type Usage (Bytes)
Text 6116
Data 776

The C Libraries will use portions of memory allocated to the .stack, .kstack and
heap sections. The size of these sections may be defined by the end user. The
amount required by the C Libraries is dependent on the end user’s usage of the
functions within the C Libraries.

4.2.2 INTEGRITY-178B Memory Usage

Table 5 shows the total memory usage of INTEGRITY-178B.

Table 5. INTEGRITY-178B Memory Usage

Usage (Bytes) Memory Type
Kernel Virtual

Text 37196 3336
Data 18152 1792

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 10 of 16

The size of the stack, kstack, and heap sections are user-definable and are
included in the totals above. The values included in the link maps above represent
reasonable values.

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 11 of 16

5 Stack Usage

5.1 Method

Stack Usage is measured when running the INTEGRITY-178B requirements and
coverage based tests. For each test, the kernel stack is filled with a “special” bit
pattern before the test is executed. Upon test completion, the stack usage is
determined by searching the stack for locations matching the bit pattern.

5.2 Stack Usage Results

2480 bytes of the 16k byte stack (~15%) is used.

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 12 of 16

6 Restrictions

6.1 INTEGRITY-178B API

The user is limited to the API defined in Safety Critical Products INTEGRITY-
178B Software Requirements Document [2]. All other calls have been removed
and will return an error.

6.2 Number of AddressSpaces

Restrictions to the number of AddressSpaces are either processor or debugger
limits. Table 6 defines the limits for various processor types.

Table 6. AddressSpace Limits

Processor Limit Value Limit Reason
PPC 603r <Value Omitted> Debugger
PPC 8245 <Value Omitted> Debugger
PPC 755 <Value Omitted> Debugger
PPC 745 <Value Omitted> Debugger
PPC 8250 <Value Omitted> Debugger

6.3 Number of Tasks per AddressSpace

No limit from INTEGRITY-178B. Limited only by amount of available memory.

6.4 Number of Kernel Objects per AddressSpace

This limits each virtual AddressSpace to <Value Omitted> Objects.

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 13 of 16

7 Integrator Considerations for Mitigating Partition Breaches

When integrating INTEGRITY-178B into their system, the user needs to assure
the integration does not result in potential partition breaches.

Potential causes of partition breaches a user needs to consider can be categorized
as follows:

• Breach due to INTEGRITY-178B’s partitioning mechanisms not used or
bypassed.

• Breach resulting from hardware failure or design.
• Breach (loss of function) due to not accounting for time utilized to handle

exceptions.

Table 7 lists potential causes of partition breaches the user may need to consider.
The table is based on an analysis of partition integrity performed by GHS. For
each potential cause, a description of mitigation considerations is included.

Table 7. Partition Breach Considerations

Potential Cause Mitigation Considerations
Memory Access
Protection Not
Provided or is Not
Utilized

No claims of partition integrity assurance can be made if the
memory access protection device of the processor is not used
or is bypassed (e.g., global access is defined for all
applications).

The processor selected by the user must support memory
access protection.

Partition Scheduler
Not Utilized

Unless other means is provided to protect against loss of
function due to Tasks in other partitions, no claim of partition
integrity assurance can be made if the partition scheduler is
not used.

Value Overwritten by
Kernel Function
Provided by the User

Kernel Tasks, device drivers, and exception handlers added by
a user have full supervisor privileges. An error in a function
with supervisor privileges can result in any memory location
being overwritten. The user is responsible for process
assurance of all of their defined Kernel Tasks.

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 14 of 16

Potential Cause Mitigation Considerations
ROM Failure May need to consider power-up and continuous tests (e.g.,

CRC or checksums) or program code.

Power-up testing of ROM used to contain the program code is
provided by GHS and may be invoked by the user. A function
is also provided that can be invoked by a user Kernel Task to
periodically test program code residing in RAM.

RAM Failure This could include slow write followed by a read before the
write is completed.

Power-up testing of RAM used to contain the program code is
provided by GHS and may be invoked by the user.

Power-up testing of RAM with initialization sections stored in
ROM is provided by GHS and may be invoked by the user.

Other testing and design considerations are:

• Utilize error detection and correction (EDAC) on RAM.
• Perform power-up test.
• Continuous testing may conflict with cache devices.
• Continuous testing may conflict with partition availability

properties (cause excessive blocking time).

Cache Failure Same considerations as RAM, except caches internal to
PowerPC do not include EDAC.

If a user does not re-initialize memory following certain types
of resets (e.g., warm-start), the user may need to assure the
cache has been invalidated/flushed prior to accessing the
retained memory locations.

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 15 of 16

Potential Cause Mitigation Considerations
Memory Access
Protection Device
Failed

Two simultaneous failures required:

 Illegal access to memory attempted AND
 Memory protection device failed.

Note that before the memory protection device fails, all
attempted illegal accesses result in the attempting Task to be
halted.

To decrease exposure time, the user may consider testing the
memory protection device at every power-up when the aircraft
is on the ground or at some periodic rate.

Partition Jitter Due to
Clock Accuracy and
Drift

Partition windows may be longer or shorter than defined due
to accuracy of the clock driving the high resolution timer
(which utilizes the PowerPC Time Base Register). The
clock’s accuracy should be included when establishing time
budgets for each AddressSpace.

The clock may also drift with environmental factors (e.g.,
temperature, altitude, and power) as well as age over time.
These factors may have to be considered when determining
worst-case accuracy.

Other Hardware
Failures

The user may have failed hardware devices which may cause
misleading data values. This includes analog-to-digital
converters and serial devices (which can have stuck bits).

Exceptions Occurring Exceptions are not blocked on a partition basis. User should
account for all exceptions (including page faults) and their
expected/worst-case execution time and rate.

For external interrupts, user may need to include functionality
to detect runaway exceptions (i.e., those whose occurrence
exceeds a worst case rate).

7.1 Intra-Partition Considerations

While the operating system protects partitions from failures in other partitions, a
partition is susceptible to failures induced within the partition. The operating
system does not prevent interactions between Tasks, Alarms, and other Objects

SCP GHS “Customer” Operating System Certification Data Sheet

 Appendix G: Page 16 of 16

defined in an AddressSpace, as these interactions are within the partition
boundary. Additional considerations during development may be:

• Task not assigned correct priority to compete with other defined Tasks.
• Task’s priority was changed by another Task.
• Task’s status was changed (e.g., Halted) by another Task.
• Time to transfer a message will be utilized during partition of Task assigned

to one or both ends of the Connection.
• Tasks that block will block until the Object they are waiting on (e.g.,

Semaphore, Alarm, Task, IODevice, Connection) is available.
• The Task is non-deterministic (e.g., causes recursion).
• Not accounting for worst-case execution. The program’s execution, cache

(and its behavior), Kernel calls, context-switch time, partition jitter, and
exceptions should be a consideration when calculating execution time.

• The Task is no longer doing useful work (i.e., is livelocked) or deadlocked.

SAMPLE ACCEPTANCE LETTER

Appendix H

H-1

U.S. Department
of Transportation
Federal Aviation
Administration

 <Directorate>
<name of ACO>
<address of ACO>

<date>

To: <ABC Company and address>
cc: <XYZ Aircraft Company and address>

Subject: Acceptance of ABC’s Reusable Software Component, the Y Component,

identified in document 12345, revision #.

Project: <project #>

Dear <addressee>:

The purpose of this letter is to document the acceptance of ABC’s Reusable Software
Component (RSC), the Y Component, identified in document 12345, revision #. The Y
Component is an operating system that was accepted as part of the XYZ Aircraft
Company’s 555 type certificate, dated ##/##/##. The partitioned operating system is
accepted with the XXX microprocessor. The board support package that serves as the
interface between the Y component and the XYZ company’s application is not accepted
as a reusable component.

The configuration of the Y component and its supporting data is documented in the ABC
Software Configuration Index number 12345, revision #. The acceptance of this
component was developed in compliance to AC 20-RSC, Reusable Software
Components. The agreement for the reusable status of the component is documented in
XYZ’s PSAC number 789-123-003 (revision #) and ABC’s PSAC number 22345
(revision #).

The following details are pertinent to the Y component acceptance:

• The assumptions of the Y component acceptance are documented in section 5.3 of
the ABC Software Accomplishment Summary 889-123-002 (revision #). Any
applicant or integrator desiring to use this acceptance in the future must adhere to
these assumptions.

• The limitations of the Y component are documented in section 4 of the attached
ABC Data Sheet 989-123-001 (revision #). Any applicant or integrator desiring
to use this acceptance in the future must evaluate and address these limitations.

• In addition to the compliance with AC 20-RSC, the component was integrated
and tested with the XYZ application, using a combination of system bench and
flight tests.

Sample Acceptance Letter

H-2

• The Y component is accepted as a Level C component. Any applicant or
integrator desiring to use this acceptance in the future must ensure that their safety
assessment supports such a software level.

• The vulnerability assessment for the Y component is documented in the ABC
Vulnerability Assessment document 999-123-001 (revision #). Any applicant or
integrator desiring to use this acceptance in the future must ensure that their safety
assessment considers the Vulnerability Assessment and that any claims made in
the assessment supports their installation.

• There are a number of open problem reports that where evaluated to have no
safety impact on the XYZ application. The problem reports are listed in section
9.2 of the ABC Software Accomplishment Summary 889-123-002 (revision #).
Any applicant or integrator desiring to use this acceptance in the future must
evaluate each open problem report and its potential impact on their system.

• The Y component had three derived requirements, which are documented in
section 7.6 of the ABC Software Accomplishment Summary 889-123-002
(revision #). Any applicant or integrator desiring to use this acceptance in the
future must consider each derived requirement in their system safety assessment
process.

• The ABC and XYZ companies implemented a process to share problem reports
found in-service and elsewhere. ABC will keep a master list of known problems
with the Y component. Any applicant or integrator that desires to use the Y
component in the future should evaluate all known problems for safety, operation,
performance, and functional impact.

• The acceptance of the Y component is for the version described in the Software
Configuration Index 12345, revision #. Any changes to the configuration of the Y
component are not addressed by this letter and would need to be reassessed on a
subsequent certification or authorization program.

The Y component life cycle data and processes were reviewed by a team of FAA
engineers and DERs to ensure compliance to RTCA/DO-178B, as described in section
5.3 of the ABC Software Accomplishment Summary 889-123-002 (revision #). The
FAA engineers and designees also reviewed XYZ’s implementation of the Y component.

It must be stated that the acceptance of the Y component is being granted in the context
of the XYZ program. Any other applicants or integrators desiring to use this component
must consider the installation, safety, performance, functional, and operational issues of
their particular system, as well as the other items mentioned in this letter.

John Doe, of the XXX Aircraft Certification Office, served as the FAA focal point for
this acceptance. Any questions may be directed to John or the the XXX Aircraft
Certification Office Manager (phone number ###-###-####).

Sincerely,
 +++++++
Manager of XXX Aircraft Certification Office

Course Evaluation Form

Appendix I

Course Evaluation Form

IVT Appendix I 1 Software Reuse in Airborne Systems

IVT or Self-Study Video
Evaluation Form

Software Reuse in Airborne Systems

IVT course # 62836; Self-Study Video #25836

We want your candid opinion on the course you just completed. Your feedback will help us to
provide the best possible products and services. Please respond to the questions below. If you
have completed via IVT, your instructor will prompt you when to enter your answers in your
keypad. If you have completed the video option, complete this form manually and return to your
ATM. You must complete and return this evaluation form to your ATM in order to get credit for
the video option.

A = Highly Satisfactory B = Satisfactory C = Somewhat Satisfactory

D = Not at all Satisfactory E = Not applicable

__

1. Clarity of objectives A B C D E

2. Clarity of instructions A B C D E

3. Ease of navigation

A B C D E

4. Relevance of content to your job

A B C D E

5. Relevance of exercises to your job A B C D E

6. Effectiveness of presentation of content A B C D E

7. Quality of feedback A B C D E

8. Quality of instructor/student communication A B C D E

9. Supervisor support in course completion A B C D E

10. Overall quality of the course A B C D E

IVT Appendix I 2 Software Reuse in Airborne Systems

Software Reuse In Airborne Systems
IVT course # 62836; Self-Study Video #25836

October 29-30, 2003

(This page is optional: complete manually)

What information was most useful to you and why?

What information was least useful to you and why?

Additional comments:

If completing this page after participating in the live ATN broadcast,
please fax this sheet to the ATN studio at 405-954-0317.

If completing after watching the video, send to your AIR Training

Manager (ATM).

