FAA National Software Conference, May 2002
Object Oriented Guidelines

AVSI Guide to the Certification of Systems with
Embedded Object-Oriented Software

|

A

||
|

Gary Daugherty

Rockwell Collins
gwdaughe@rockwelicollins.com
319.295.4065

!‘ Aerospace Vehicle Systems Institute

Whatis AVS I?

® Aconsortium of Boeing and its suppliers

e Aforum for collaborative research and related efforts

® Managed by Texas A&M

® Two technical panels

® This projectis sponsored by the AVS | Common Tools & Processes Panel
® Participants: Boeing, B.F. Goodrich, Honeywell, RockwellI-Collins

Page 2 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty

FAA National Software Conference, May 2002
Object Oriented Guidelines

" Project: AFE #7 Certification Issues for Embedded
~a=sm Object-Oriented Software

Situation

® Object-Oriented software is rapidly becoming commonplace since it
reduces costvia reuse

® However, ithas notbeen widely used in safety-critical avionics software

® DO-178B and FAA do not have explicit guidelines for the use of this
technology

® As a result, individual programs have verification and certification ris ks

Page 3 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

" Project: AFE #7 Certification Issues for Embedded
=== Object-Oriented Software

Idea

® |dentify and resolve issues specific to Object-Oriented software with
respectto DO-178B by pooling the resources of Boeing and its suppliers

Approach

® Document the guidelines: A Guide to the Certification of Systems with
Embedded Object-Oriented Software

® Evaluate supporting tools, e.g. for coverage and enforcement
® Make FAA presentations and obtain their concurrence

® Cooperate with FAA funded effort by John Chilenski to define coverage
requirements

Page 4 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty

FAA National Software Conference, May 2002
Object Oriented Guidelines

Participating Company Team Members
Boeing John Chilenski
Co-Principal Investigator Seattle, WA
Honeywell Dennis Cornhill, Wayne Schultz
Co-Principal Investigator Minneapolis, MN
BFGoodrich Tom Rhoads
Co-Principal Investigator Vergennes, VT
Rockwell Collins Gary Daugherty
Prime Contractor Cedar Rapids, IA
AVSI David Lund
College Station, TX

Page 5 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘I Issues

The project addressed use of the following OO features:
— Dynamic dispatch

— Single inheritance of interfaces and the overriding of operations

— Single inheritance of implementation and the overriding of methods
— Multiple inheritance of interfaces and implementation

— Inlining

— Template classes and template operations

— Dead and deactivated code in reusable components

Page 6 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘. Result

A Guide to the Certification of Systems with Embedded Object-
Oriented S oftware

® OO features evaluated with respect to their impact on the analysis and
testing requirements of DO-178B

® Results summarized in tables similar to those appearing in Guide for the
Use of the Ada Programming Language in High Integrity Systems, 1S OAEC
PDTR 15942

® Restrictions defined by a collection of design and process “patterns”

® Expressed firstata design level, then mapped to language specific rules
® Rationale for the guidelines

® Related tool support

Page 7 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘ General guidelines

| ssue FA RC su TA oMU | RT sc

1. Dynamic dispatch Rstrt Inc Inc Rstr? Inc Rstr® Rstr34°

2. Inline Rstr’ Inc Rstr® | Ratr® Inc Inc Rstr 1015

3. Dead code Exc Exc Exc Exc Exc Exc Exc

4. Deactivated code Rar® | Ratr® | Rt | Ratr'* | Rstr™ | Rstr®® Rstr®®

5. Single inheritance of Inc Inc Inc Inc Inc Rstr® Inc
interfaces and
overriding

6. Multipleinheritance of | Inc Inc Inc Inc Inc Rstr*© Inc
interfaces

7. Single inheritance of Rstr Inc Inc Rstr Inc Rstr® Rstr®
implementations and
overriding

8. Multipleinheritanceof | Rstr* | Inc Inc Rstr Inc Rstr® Rstr'
implementations

9. Template classes Ratr? | Inc Ratr? | Rstr? Inc Inc Rstr*?

10. Template operations Rstr? | Inc Ratr? | Rstr? Inc Inc Rstr*?

Page 8 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ DO-178B specific guidelines

| ssue Level A Level B Level C Level D

1. Dynamic dispatch Rstr™23 Rstr*? Rstr*? Rstr!

2. Inline Rstr®"8 Rstr®® Rstr®® Rstr

3. Dead Code Exc® Exc® Exc® Rstr

4. Deactivated Code Rstr* Rstr* Rstr' Ratr'

5. Singleinheritance of interfaces | Rstr*? Rstr* 2 Rstr*? Rstr!
and overriding

6. Multipleinheritance of Rstrt 24 Rstrt 24 Rstrt >4 Rstrt*
interfaces

7. Singleinheritance of Rstr* 2 Rstr*? Rstr*? Rstr!
implementations and overriding

8. Multiple inheritance of Exc® Exc’ Exc® Rstr*?
implementation

9. Template classes Rstr'® Rstr'® Rstr'© Rstr'®

10. Template operations Rstr'® Rstr'® Rstr'® Rstr'®

Page 9 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.1: Inheritance with overriding

3 rules + general guidance

Addresses issues related to inheritance, overriding and dispatch

1. Simple overriding rule
2. Simple dispatch rule
3. Initialization rule

Page 10 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ Background: Inheritance

® |nheritance was originally viewed as a mechanis m for sharing
code and data definitions

* As understanding of OO modeling has matured, however, the
focus has increasingly been on the specification of interfaces

* And the specification of interfaces as ‘contracts’ between clients
and implementers

Page 11 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Background: Classes
A Class = Ada83 package spec that
defines a record type & associated
operations

Class instance = object

Page 12 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ Background: Attributes
A
... Attribute = Record field
public (+)
protected #)
private (9

Page 13 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Background: Operations, methods, signatures

A

- Operation =subprogram spec
Als o0 public (+), protected @), private (9
Method =subprogram body

Signature, e.g. “m (p: Integer)”
Overloading

Constructor

Des tructor

Page 14 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ Background: Method calls
A
X: A Declared type
m(@: int)
x.m(@);
Remaining
arguments
Target object
!‘ Background: Inheritance with overriding
A B inherits the elements of A
m (integer) It may als o override them
n (Integer):
Float And may add elements of its own
B
00
n (Integer):
Float

Gary Daugherty

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ Background: Polymorphism

* Polymorphis m permits instances of a subclass to be
assigned to variables declared to be an associated
superclass

target DeclaredType = new RunTimeType();

® Dynamic dispatch ensures the method executed by a call is
that associated with the object’s run time type

targetoperation (@rguments);

Page 17 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Background: Polymorphism
A
m(integer) X: A=new B; Run-ime type
A Declared type
i x.m(@);
B c
m(Integer)
D
m(nteger)

Page 18 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Background: Dynamic dispatch

® Method selection is a function of the run time type and the method
signature

e Conceptually there is a single dispatch routine for all calls
containing a pair of nested case statements

case of run time type
case (<type>)
case of method signature
case (< method>)
call <method> defined by < type>
end
end

® In practice, calls to this universal dispatch method are ‘inlined’ at
the point of call

Page 19 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Background: Dynamic dispatch

® Typically implemented using “dispatch tables”
* Small, fixed overhead

* At the point of call: (1) getthe dispatch table associated with the
target object, (2) index itby a number associated with the method
signature, and (3) invoke the method

targetObject

dispatch table for type
i
run time type L <methodS ighaturel>

< methodS ignature 2>

<methodS ignature N>

Page 20 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

10

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.1: Inheritance with overriding

1. Simple overriding rule

An operation may override an inherited operation with the same signature
by associating a method with it in the subclass definition, by making it more
visible to clients, by subtyping its return type, or by being more restrictive
regarding the types of errors it can report to clients (e.g., as exceptions or
by setting error return codes). No other form of overriding should be
allowed.

Ensures LSP is notviolated at the language level, in terms of method
declarations.

Page 21 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!- Simple overriding rule

Associating a method with an operation in a subclass:
abstractclass A{ A

abstract int m(nta); m(@: int): int
}
class B extends A { T

intm(nta) { B

return a*a;

}
} m(@: int): int
page 22 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

11

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Simple overriding rule

Making an operation more visible to clients:

abstractclass A{ A
abstract protected int m(inta);
} #m(a: int): int
abstractclass B { I
abstract public int m(inta);
}
+m(@: int): int
Page 23 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘ Simple overriding rule
Subtyping the return type:
class B { B
public: clone(): B

virtual B* clone () {
return new B (*this);

. ' T

. D
class D: public B {
public:
virtual D* clone () { clone(): D
return new D (*this);
Page 24 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

12

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Simple overriding rule
Restricting the types of errors reported:
interface A{ A

abstractint m(inta) throws Exception; mf: int). int
}
interface B extends A{ T

intm(inta) throws MyException; B
}

m@: int). int

Page 25 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘ Simple overriding rule
Overriding combinations of these properties:
abstractclass A{ A

abstract protected intm(inta),
} #m(@: int): int
class B extends A { T

public intm(inta) { B

return a*a;

}

} +m(: int): int

Page 26 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

13

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Violation of simple overriding rule

Throwing unexpected exceptions [Binder, naughty children]

interface A{
intm(inta);

}

interface B extends A {
intm(inta) throws SomeException;

}
Page 27 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘ Violation of simple overriding rule

Redefinition of inherited default parameter values in C++ [Scott
Meyers, Effective C++, p. 171]

enum S hapeColor {RED, GREEN, BLUE};
class Shape {

public:
virtual void draw (S hapeColor color = RED) const= O

Page 28 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

14

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Violation of simple overriding rule

class Rectangle: public S hape {
public:
virtual void draw (S hapeColor color = GREEN) const,

S hape *pr = new Rectangle;
pr->draw(); /calltodraw defined by Rectangle

This, however, does notdraw a green rectangle as we would expect

Page 29 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Violation of simple overriding rule

S ubtyping of parameters in Eiffel [Binder, naughty children]

class S kier class Girl inherit S kier redefine share end
feature
share (other: Girl) is

feature
share (other: Skier) is
end
end end
end

Page 30 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

15

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.1: Inheritance with overriding

2. Simple dispatch rule

When an operation is invoked on an object, the method associated with the
operation in its run time class should be executed.

This rule should apply to all calls except explicit calls to superclass
methods, which should be addressed as described in Pattern 4.3 (Method
Extension).

Ensures method dispatch is semantically equivalentto case, without
considering its underlying imple mentation.

Page 31 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Simple dispatch rule

When an operation is invoked on an object, the method associated
with the operation in its run time class should be executed.

AltitudeTape
hide()
highlight()
draw()
DisplayElemente;
DisplayElement Compass
_ . . hide()
e = new AltitudeTape(); highlight(
draw()
e.draw();
TextFeld
hide()
draw()
highlight()
Page 32 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

16

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Violation of the simple dispatch rule

Overriding of non-virtual function in C++ [S cott Meyers,
Effective C++, p. 169] (issue: programmer s pecified
optimizations)
class B {
public:

void mf(); #/mf, as defined by B

Page 33 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘I Violation of the simple dispatch rule

class D: public B {
public:
void mf(); #includes action to maintain invariant for D

¥

B *pB = new D;
pb-> mf(); #calls B’s mf on an objectwith run time class D

As a result, we fail to maintain the invariant for object x

Page 34 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

17

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.1: Inheritance with overriding

3. Initialization rule

No call to an externally visible operation of an object other than its
constructors should be allowed until it has been fully initialized.

Prevents calls to subclass methods before subclass attributes have been
initialized and subclass invariants have been established.

Page 35 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Initialization rule

No call to an externally visible operation of an object other than its
constructors should be allowed until it has been fully initialized.

class Y extends X {
private inta;
private Vector b;

public X(@intn) {super(); a = n; b = createVector (@)}

private Vector createVector (intsize){... }

Page 36 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

18

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Violation of the initialization rule

Dispatch to subclass method during object construction (issue
= initialization)
class AA{

int next;

public AAQ {next = firs tElement();}
public int firs tElement() {return 1}

}
Page 37 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
" Violation of the initialization rule

I_

class BB extends AA {
int min;
int max;
public BB (int min, int max) {
super();
this.min = min;
this.max = max;

}

public int firs tElement() {return min;}

}

Page 38 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

19

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.1: Inheritance with overriding

Source code to object code traceability

Nearly all compilers implement [dynamic dispatch] by associating a method
table with the target object's run time class that is indexed by a method
number at the point of call.

Where concerns about source code to object code traceability and timing
analysis dictate, the compiler vendor may be asked to provide evidence of
this mapping, or evidence of a semantically equivalent mapping that
guarantees that dispatch times are predictable and bounded.

Where concerns about source code to object code traceability lead to inspection
of the object code produced by the compiler, it may also be necessary to
examine the structure of the method tables and the compiler generated
code at the point of call.

Page 39 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Source code to object code traceability

AltitudeTape
hide()
highlight()
draw()

DisplayElemente;

DisplayElement Compass
hide()

e = new Altitude Tape(); highlight(

draw()

e.draw();

TextFeld

hide()
draw()
highlight()

Page 40 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

20

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Source code to object code traceability
dispatch (DisplayElemente, Method m)
case of e’s run time type AT
case (AltitudeTape) 7::35,?%‘0
case of method m a0
case (draw)
Dis |nvol.<e AltltudeTape.drawo; — Compass
case (highlight) T
e= invoke Compass. highlight();
ed case (hide)
invoke TextField. hide (); T —
end — slrg‘:l?gmo
end
end
Page 41 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘I Source code to object code traceability
e . AltitudeTape
AltitudeTape hide()
RO |
0 hide
1 highlight S
hide()
2 draw a0
MOV @RO, R1 —Get the method table address T —
ADD #2, R1 —Add the offset for “draw ()" | .
JSR PC,@R1 —Invoke the method

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Page 42

21

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Source code to object code traceability

* Think of dispatching as the normal case
® Think of all calls as mapping to the previous instruction sequence
* Statically bound calls are then an optimization

® And correspond to the special case in which there is a single
choice of which method to call

Page 43 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.2: Subtyping

2 rules + general guidance

Addresses issues related to superclassAubclass compatibility and
the reuse of verification artifacts and results

1. Inherited testcase rule

2. Separate contextrule

Page 44 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

22

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.2: Subtyping

1. Inherited test case rule

Every test case appearing in the set of test cases associated with a class
should appear in the set of test cases associated with each of its
subclasses. Only test cases for private operations (like private operations
themselves) are not inherited.

Enforces LS P without requiring formal s pecification.

Page 45 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.2: Subtyping

Corollary

If the subclass invariant is stronger than that of its superclasses, then a
check of this invariant (rather than the weaker superclass invariant) should
be a part of the pass/fail check of each inherited test case.

When we run the inherited testcases againsta subclass instance we must
use the subclass invariantto check the result

Page 46 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

23

FAA National Software Conference, May 2002
Object Oriented Guidelines

Gary Daugherty

e

Pattern 4.2: Subtyping

2. Separate context rule

Each method should be separately tested in the context of every class in
which it appears, irrespective of whether it is defined by the class or

inherited by it.

Testcases are inherited but testresults are not.

Each method mustbe re-tested in the context of each subclass.

Page 47

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Subtype compatibility

A

Float

n (Integer):

T

B

Float

n (Integer):

Page 48

Consider the methods n (Integer) : Floatand
n (Integer) : Float

Each has a precondition = initial state for
testcases

Each has a postcondition = expected result
for testcases

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

24

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Liskov Substitution Principle
A Precondition of n, mustrequire the same or
n (Integer): less than the precondition of n
Float . .
P os tcondition of n, must deliver the same or
more than the postcondition of n
We testfor this by “inheriting” all testcases
B
n (Integer):
Float
Page 49 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Violation of subtyping rules: stronger precondition

Stronger precondition in subclass [Binder, naughty children]
interface List{

/’*

* Adds an elementto the listata given position.

* postcondition: item appears in the list

*/

void add (Objectelement, int index) throws OutOfMe mory;
}

Page 50 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

25

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Violation of subtyping rules: stronger precondition

interface BoundedListextends List{
void setBounds (int min, int max);

/k*

* Adds an elementto the listata given position.
* precondition: index is within bounds

* postcondition: item appears in the list

*/
void add (Objectelement, int index) throws OutOfMe mory;
}
Page 51 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Violation of subtyping rules: weaker postcondition

Weaker pos tcondition in subclass [Binder, naughty children]

interface Log {
final int HIGH = 100;

/’*

* Writes a message to the log.

* postcondition: The message appears in the permanentlog. If the
priority

* is HIGH or greater, the message is also displayed.

*/
void writeMessage (S tring message, int priority);
}
Page 52 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

26

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Violation of subtyping rules: weaker postcondition

interface SimpleLog extends Log {

/‘*

* Writes a message to the log.

* postcondition: The message appears in the permanentlog.
*/

void write Message (S tring message, int priority);

}
Page 53 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!- Violation of subtyping rules: square peg

Square as a subtype of Rectangle, with inherited operation
resize (intwidth, int height) [Binder, square peg in a round hole,
faulty intuition]

Rectangle

interface Rectangle {
resize(...)

void resize (int width, int height);

} T
,r*

* invariant: width == height Square
*/
interface S quare extends Rectangle {

Page 54 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

27

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Violation of subtyping rules: accidental override

Subclass defines a method with the signature of an unrelated
superclass method [Binder, accidental override]

class SimpleDirectory { SimpleDirectory

o add(S tring file)

* Add a file with a given name.

iy T

void add (String file) {

HierarchicalDirectory

) } add(S tring subdirectory)
Page 55 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Violation of subtyping rules: accidental override

class HierarchicalDirectory SimpleDirectory

extends S impleDirectory {
add(S tring file)

,r*
* Add a subdirectory with a given name. T
*
/
void add (S tring subdirectory) { HierarchicalDirectory

) add(S tring subdirectory)

}

Page 56 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

28

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Violation of subtyping rules: missing override

Inherited superclass method fails to maintain subclass

invariant [Binder, missing override]

interface Window {

/c*

* Moves a window to a particular position
* on the screen.

*/

void move (intx, inty);

}

Page 57

Window

move(...)

Alertwindo

AL
¥

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Violation of subtyping rules: missing override

/'*
* invariant: Window appears in front of all others
*/

interface Alertwindow extends Window {

Page 58

Window

move(...)

Alertwindo

W
¥

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

29

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.3: Method extension

The sole exception to the simple dispatch rule

Permits the implementation of a subclass method in terms of its
corresponding superclass method

Commonly used to define subclass constructors in terms of
superclass constructors, but can be used to extend the
implementation of any method

Page 59 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.3: Method extension

Method extension rule

To extend the functionality of an inherited method, the subclass method
should explicitly call the inherited version of the same operation, followed by
additional code that extends the overall effect (postcondition).

The explicit call must be to the corresponding superclass version of the
same method and must be statically bound.

Page 60 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

30

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.3: Method extension

Extension of a method’s implementation in a subclass

class A{
void m (inta) {
//do something
}
}
class B extends A {
void m (inta) {
super.m(@);
//do something more
}
}

Page 61 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.3: Method extension

We do not allow a method to extend a superclass method
with a different signature in this way because:

® This can lead to a confusing situation if the other method is later
overridden

* There is no need to do so; we can just call the inherited version of the
other method

Page 62 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

31

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.4: Class coupling

5 rules + general guidance

Addresses DO-178B concerns with coupling

Addresses coupling between clientand classes

Addresses coupling between superclasses and subclasses

Encourages data hiding and hardware abstraction (which supports
partitioning and reduces the cost of future likely changes)

Supports the enforcement of key class and system invariants
(which may have a directimpact upon safety)

Page 63 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.4: Class coupling

1. Client data abstraction rule

Clients should access the data representation of the class only through its
public operations.

All attributes should be hidden (private or protected), and all strategies
associated with the choice of data representation should be abstracted by
its set of public operations.

Page 64 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

32

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.4: Class coupling

2. Client hardware abstraction rule

Clients should access any hardware abstracted by the class only through
its public operations.

All hardware registers should be hidden (private or protected), and all
strategies associated with the use of a particular hardware device should
be abstracted by its set of public operations.

Page 65 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.4: Class coupling

3. Invariant rule

The invariant for the class should be a part of the postcondition of every
class constructor, a part of the precondition of the class destructor (if any),
and a part of the precondition and postcondition of every other publicly
accessible operation.

And clients should be able to influence the value of the invariant only
through execution of these operations.

Page 66 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

33

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.4: Class coupling

4., Subclass data abstraction rule

Subclasses should access the data representation of the class only
through its public and protected operations.

All attributes should be hidden (private), and all strategies associated with
the choice of data representation should be abstracted by its set of public
and protected operations.

Page 67 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.4: Class coupling

5. Subclass hardware abstraction rule

Clients can access any hardware abstracted by the class only through its
public and protected operations.

All hardware registers should be hidden (private), and all strategies
associated with the use of a particular hardware device should be
abstracted by its set of public and protected operations.

Page 68 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

34

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.5: Multiple interface inheritance

3 rules + general guidance
Addresses issues related to ambiguity and intent.

1. Repeated interface inheritance rule
2. Interface redefinition rule

3. Independentinterface definition rule

Page 69 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Background: Multiple inheritance

® |Inheritance was originally viewed primarily as a mechanis m for
sharing code and data definitions

® |n this context, multiple inheritance was viewed as a mechanism
for constructing a subclass implementation from multiple
superclass implementations

Page 70 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

35

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Background: Multiple interface inheritance

* With an increased emphasis on interface inheritance during
analysis and design, multiple inheritance is now used primarily as
a means of classifying entities that logically belong to more than a
single category

UnmannedVehicle AirVehicle

UAV
Page 71 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘I Background: Multiple interface inheritance

® As a result, languages such as Java only support multiple
inheritance involving /interfaces

* And rely on delegation to achieve the effects of multiple
implementation inheritance

Page 72 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

36

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Inheritance: Using symbols to represent operations

A B inherits the operations of A

A Itmay als o override them A
And may add operations of its &4n

5 0 m(:int)
Q A n (x: int) : float
A
Q? o0
A n (a: int): float
!‘ 1. Independently defined ...
A B Independently defined
= operations with the same
[m] !
signature

37

FAA National Software Conference, May 2002

Object Oriented Guidelines

V‘ Inheritance “math”

-

L]
]

-~

pppppp

LSP

O/OO |

® Signature is the same
® Pre, weaker than either or
® Post, stronger than both and

Gary Daugherty

38

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ 2. Repeated inheritance
A
* Same element “¥*“ is
inherited along more than one

Ar path

777777

/‘ Inheritance “math”
AT

A
% %

| s

Gary Daugherty
39

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ 3. Redefinition ...
A
Y Redefinition along separate
paths
| |
B Cc
*
|
D
7 Inheritance “math”

pAs

"
% %
¥
*

Gary Daugherty
40

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

\

LSP

7

i

5| 22

Signature is the same
Pre, weaker than either % or 5%
Post, stronger than both ¢ and ¥

Page 81 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.5: Multiple interface inheritance

1. Repeated interface inheritance rule A

When the same operation is inherited by an A
interface via more than one path through the
interface hierarchy, this should result in a lr
single operation in the subinterface.

Makes no sense to provide two identical B c
operations to clients -so just one.

Page 82 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

41

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.5: Multiple interface inheritance

Repeated interface inheritance A

interface A{

/e*
* pre: some precondition T
* post some postcondition | |

*/

int f(int p, int q) throws Exception;
}

interface B extends A {} zr zr

interface C extends A{} |

interface D extends B, C {} D

Page 83 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.5: Multiple interface inheritance

A

2. Interface redefinition rule *

When a subinterface inherits different
definitions of the same operation [as a Ar

result of redefinition along separate

paths], the definitions must be I |

combined by explicitly defining an B (o}

operation in the subinterface that x
follows the simple overriding rule with
respect to each parent interface.

To ensure thatthe clientinterface is T T
always stated explicitly, and to double I
check intent. D

Page 84 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

42

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.5: Multiple interface inheritance
. -g. - - A
Interface redefinition and join *
interface A {
Vs T
* pre: some precondition
* post some postcondition I |
*/ B C
int f(int p, int q) throws Exception; *
}
interface B extends A{ Lr ‘r
,-*
* @override I
* pre: weaker precondition, B.pre D
* post stronger postcondition, B.post *
*/
int f(int p, int q) throws MyException;
}
Page 85 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘ Pattern 4.5: Multiple interface inheritance
. . A
Interface redefinition and join *
interface C extends A{}
interface D extends B, C { T
I |
* @join B c
* pre: B.pre x
* post B.post
*/
int f(int p, int q) throws MyException; T T
} I
D
*

43

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.5: Multiple interface inheritance

A

Interface redefinition and join, 2nd *
example
interface A { T

,*
* pre: some precondition I |

* post some postcondition B (o}

M _ _ * *
int f(int p, int q) throws Exception;

}
interface B extends A{ T T
e I
* @override D
* pre: weaker precondition, B.pre *
* post stronger postcondition, B.post
*/
int f(int p, int q) throws MyException;
}

Page 87

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.5: Multiple interface inheritance

A

Interface redefinition and join, 2nd &
example
interface C extends A { lr

/—*
* @override [|

* pre: weaker precondition, C.pre B C
* post stronger postcondition, C.post

*/ w w
int fint p, int q) throws MyE xception;

' 1 T
interface D extends B, C { l
/’*

* @join D

* pre: B.pre or C.pre *

* post B.postand C.post

*/

int fint p, int q) throws MyE xception;
}

Page 88

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

44

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.5: Multiple interface inheritance
3. Independent interface definition rule A B
When more than one parent ¢ *

independently defines an operation with
the same signature, the user must
explicitly decide whether they represent

the same operation or whether this T T
represents an error. |

Errors should be caught by normal testing. c

Page 89 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘ Pattern 4.5: Multiple interface inheritance
Independent definition and join A B
interface A { Y *

ﬁ*
* pre: some precondition

* post some postcondition

/ i T

int fint p, int q) throws MyException; I

}

interface B { e
ﬁ*
* pre: the same precondition
* post the same postcondition
*/
int fint p, int q) throws MyException;
}

Page 90 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

45

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.5: Multiple interface inheritance

Independent definition and join

interface C extends A, B {
/—*
* @join
* pre: the same precondition
* post the same postcondition
*/
int fiint p, int q) throws MyException;

A

}
Page 91 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!‘ Pattern 4.5: Multiple interface inheritance

Independent definition and join, 2nd
example

interface A {
/’*
* pre: some precondition
* post some postcondition
*/
int fiint p, int q) throws Exception;
}

interface B {
/'*
* pre: some other precondition
* post some other postcondition
*
/
int fiint p, int q) throws MyException;
}

Page 92

A

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

46

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.5: Multiple interface inheritance
Independent definition and join, 2nd A B
example
w *
interface C extends A, B {
/k*
* @join
* pre: A.pre or B.pre ‘r T
* post Apostand B.post I
*/
intfint p, int q) throws MyException; (o
} Y

Page 93 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.6: Multiple implementation inheritance

3 rules + general guidance

Addresses issues related to ambiguity and intent.

1. Repeated implementation inheritance rule
2. Implementation redefinition rule
3. Independent implementation definition rule

The general guidance recommends use of multiple /implementation
inheritance only for level D software, and in accordance with the
above rules.

Delegation is the recommended work around in Java and C++.
The Ada Rationale offers a standard work around for Ada95.

Page 94 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

47

FAA National Software Conference, May 2002

Object Oriented Guidelines

!‘ Background: Multiple implementation inheritance

Gary Daugherty

® Involves the composition of competing implementations developed
along separate paths (rather than the extension of a single
superclass implementation along a single path)

® Involves the composition of executable elements (rather than
interface specifications)

® Involves the composition of elements thatreference one another
(sometimes in subtle ways)

Page 95 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Background: Multiple implementation inheritance

® May introduce dead or deactivated code and data referenced only
by overridden (unchos en) imple me ntations

® s difficult to implementwell (C++ vs. Eiffel)

® Has anacceptable work around (delegation)

Page 96 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

48

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Background: Delegation

Delegation of client calls to B::m(int) to A::m(int)

A class A{
] intm(@nta){... }
m(@: int)
T l ‘ class B {
private A delegate;
public int m(inta) {
return delegate.m@);
— m@: int) }
}
Page 97 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Background: Delegation as a work around for Ml

A B Single inheritance +
delegation

Inheritance of the
implementation of one

superclass
L\ Delegation to the
%g implementation of another

Page 98 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

49

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ Pattern 4.6: Multiple implementation inheritance
. o . A
1. Repeated implementation inheritance rule 5
When the same feature (method or attribute) is e
inherited by a class via more than one path A
through the interface hierarchy, this should (by
default) result in a single feature in the subclass. ?
B o
A A
D
A
Page 99 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.6: Multiple implementation inheritance

Repeated implementation inheritance with A
sharing

m]
class A{ i{
private:
inta; ?
public: | |
% ’ B c
* pre: some precondition
* post: some postcondition A
*/
intf @ntp, intq), #references a, calls n

protected: T T
P |
* pre: some other precondition D
* post: some other postcondition
*/
floatn (int x);

Page 100

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty
50

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ Pattern 4.6: Multiple implementation inheritance

A

class B: public virtual A { =

protected:
/* *
* @override A

*/ ?
float n (int x);

class C: public virtual A { B

class D: public B, public C {
protected: A

,(*

* @join
*/
floatn (intx){... } T | T
}

Page 101 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.6: Multiple implementation inheritance

Repeated implementation inheritance with A
replication

m]
class A{ i{
private:
inta; ?
public: | |
,(*
* pre: some precondition B C
* post: some postcondition
*/ A
intf (ntp, intq), #references a, calls n

protected: T T
,(*

* pre: some other precondition |
* post: some other pos tcondition D
*/
float n (int x); A

Page 102

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty
ol

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.6: Multiple implementation inheritance

class B: public A{ A
protected:

* @override

*/

float n (int x); ?
}

=l
A
A

class C: public A{} | |

class D: public B, public C { # @replicate A

public:
*

intf (ntp,intq){...}

protected:
*

:I@join

IA¢
floatn intx){...} A

Page 103 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.6: Multiple implementation inheritance

A
2. Implementation redefinition rule O
When a subclass inherits different Y
definitions of the same method [as a result A
of redefinition along separate paths], the ?
definitions must be combined by explicitly

defining a method in the subclass that | |

follows the simple overriding rule with B (o}
respect to each parent class.

A e
A
page 104 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

52

FAA National Software Conference, May 2002
Object Oriented Guidelines

Gary Daugherty

!‘ Pattern 4.6: Multiple implementation inheritance

Implementation redefinition

class A{
private:
inta;
public:
/—*
* pre: some precondition

* post some postcondition
*/

A

=l
A
A

intf (intp, intq), #references a,calls n |2 had

protected:
ﬁ*
* pre: some other precondition
* post some other pos tcondition
*/
float n (int x);

Page 105

w
A

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.6: Multiple implementation inheritance

class B: public virtual A { A
public: o
F* *
* @override A
*/
intf (intp, intq); still references a, calls n ?
protected: | |
r B C
* @override
*/ <o
float n (int x); ‘f ¥
|
D
Y
A

Page 106

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

53

FAA National Software Conference, May 2002
Object Oriented Guidelines

!‘ Pattern 4.6: Multiple implementation inheritance
class C: public virtual A { A
private: o
intb; *
) A
public:
» il
* @override | |
*/
intf (intp, intq); #references b B C
<
Yo
A *
D
w
A
Page 107 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.6: Multiple implementation inheritance

class D: public B, public C { A
public:

m}
’* . . *
A

intf Gintp,intq){...} f
protected: | |

floatn (intx){... }

>

A
A

AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

Gary Daugherty
54

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.6: Multiple implementation inheritance

3. Independent implementation A B
definition rule = >
When more than one parent independently % %
defines a method with the same signature, A iy

the user must explicitly decide whether
they represent the same method or T T
whether this represents an error. |

If they are intended to be different, C
renaming should be used to distinguish
them. Otherwise an overriding method *
should be explicitly defined in the subclass
to combine them.

Page 109 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.6: Multiple implementation inheritance

Independent implementation A B
inheritance = >
class A{ * ¥
private: A 2%
inta; T zr
public:
£ |
* pre: some precondition c
* post some postcondition
*/ *
intf (intp, intq), #/references a, calls n
protected:
/’*

* pre: some other precondition

* post some other postcondition
*/

float n (int x);

page 110 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

55

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.6: Multiple implementation inheritance

class B { A B

private:

intb;

public:
ﬁ*

> >

%[O

* pre: some precondition T T
* post some postcondition |

*/

intf (intp, intq); #references b, calls z (o}

rotected:
s %
* pre: some other precondition
* post some other pos tcondition
*/
floatz ();

}

Page 111 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.6: Multiple implementation inheritance

class C: public A, public B { A B
blic:
P E S
* @join ¥ *
*/ A Xt
intf @ntp,intq){...}
) 1 T
o
*
Page 112 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

56

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.7: Re-usable Components

Aprocess pattern rather than a design pattern
5 guidelines
Addresses the reuse of certification artifacts in general

Addresses component requirements and system requirements
traceability

Addresses the testing of re-usable components, e.g., in contexts
where notall operations are used

Page 113 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Reuselretest issues

“The reuse of software across products or systems raises several issues,
especially in the area of re-test of the software.” [AVS | Guide, p. 29]

System
100% coverage of Stacks
o
100% coverage of Stacks Stacks Stacks Verification Stacks Requirements
System System
Requirements Verification l
Bus Communications Bus Communications
Bus Communications Verification Requirements
Bus Communications N 1]
5 methods & attributes: 100% coverage,
5 methods & attributes: 0% coverage
100% coverage of Bus Communications

page 114 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

57

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Reuse/retest issues

“At the application level, five of these are used and can be shown to be tested at the
system level. The other five are deactivated for this application. However, these five
requirements are still tested by re-executing the testcases thatwere previously
developed specifically for the component.” [AVS | Guide, p. 29]

System

100% coverage of Stacks

100% coverage of Stacks Stacks Stacks Verification Stacks Requirements

System System
Requirements Verification ||

Bus Communications Bus Communications
Bus Communications Verification Requirements

Bus Communications

5 methods & attributes: 100% coverage,
5 methods & attributes: 0% coverage

100% coverage of Bus Communications

Page 115 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software
!- Pattern 4.7: Re-usable Components

Component certification package

“Each component must have a complete, reusable certification package,
justas the software itself is intended to be reusable.”

“The component must contain all of the artifacts needed to certify at or
above the software level of the application.”

“This should include the certification planning data that were originally
used to develop the component. This planning data may differ from the
plans used to develop the application code in the final systems; however,
these plans mustbe submitted to certification agencies each time a system
application is made. The PS AC of the final system should reference this
planning data.”

page 116 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

58

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.7: Re-usable Components

Component requirements specification

“Each component must have its own complete set of requirements. This
should include a highdevel S W requirement specification and low-evel
requirements, as these are defined in DO-178B, along with any
architectural considerations.”

“Itis important that requirements s pecify the required interfaces
unambiguous ly, along with any underlying assumptions in the architecture,
so thatitis clear to the application developers whether the componentis fit
for use in the intended application.”

“Aclear set of requirements will help later application developers avoid
thinking that s ome of the s oftware in the componentis dead code.”

Page 117 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.7: Re-usable Components

System requirements traceability and the identification of
deactivated code/data

“There mustbe some appropriate connection in the trace matrix between
the application's highHevel software requirements and the appropriate high-
level requirements of the component”

“In some cases, this may be a directtrace ... However, other lowerJever
requirements may be derived.”

“The parts of the component not used in the application s hould be
indicated as unused somewhere in the application data.”

page 118 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

59

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.7: Re-usable Components

Component testing

“Each component must have tests written which verify the code againstall
of the component requirements.”

“Application requirements that trace to component requirements may make
use of these testcases to show coverage. Structural coverage data must
also have been collected to show 100% coverage of the code or include an
analysis if collection did notachieve 100% .”

Page 119 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Pattern 4.7: Re-usable Components

Component testing

“DO-178B requires tests to be run on the final platform or equivalent
simulation environment. Therefore, if the final object code of the
component softvare has notbeen previously tested on the final or
equivalent platform, its testcases mustbe re-executed on that platform.”

“If the bit-pattern of the object code of the componenthas not changed,
there is no need to re-collect the structural coverage data, as the paths
have notchanged. If the objectcode of the componentis changed in some
way (e.g., different compiler, different compiler version, different
optimization options), structural coverage data should be re-collected as the
compiler may have introduced new paths into the object code”

page 120 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

60

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.7: Re-usable Components

Structural coverage of unused (deactivated) code

“The S tructural Coverage Analysis Resolution rules for Deactivated code
insection 6.4.4.3 of DO-178B apply to the component functions thatare not
intended to be executed.”

Page 121 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

/‘ Pattern 4.8: Template classes and template operations
" P p p

5 rules + general guidance
Addresses the testing of individual ins tantiations
Addresses situations where the use of templates is problematic

Addresses issues related to the manner in which templates are
instantiated

Provides a consistent view of template instantiation and inline
expansion

page 122 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

61

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.8: Template classes and template operations

Templates should be instantiated and tested with each type argument
to parameter binding in the system unless:

1. the types map to the same underlying representation
2. and the object code can be shown to be equivalent

Page 123 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

/‘ Pattern 4.8: Template classes and template operations
" P p p

Nested templates, templates with child packages (Ada), and templates
with friend classes (C++) should be prohibited for levels A, B, and C.

Formal "inout" should be prohibited for levels A, B, and C.

Templates should be compiled using "macro-expansion” rather than
"code sharing".

For macro-expanded templates, the guidelines for inlining should be
followed inasmuch as they apply.

page 124 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

62

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Pattern 4.8: Template classes and template operations

Object code equivalence

Equivalence implies that no object code has been added or removed
between the two versions of object code, although base addresses and
references to constants may differ.

For example, if the op-codes (e.g., 32-bit instructions for copy/move £tc. in
all versions) and the code sequence are the same, and the stack frames
are the same size and have the same offsets (base addresses can differ)
then equivalence can be shown.

Control variables and constants can be different, butshould be shown to be
of the same size and usage should be shown to be consistent. This
definition of equivalence, however, is notintended to be complete.

Page 125 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Section 3.1 Notes On Inlining

5 notes

Address the impact of inlining on:

® data and control flow analysis (FA)

® stack usage and timing analysis U & TA)
® source code to object code traceability

® structural coverage analysis (SC)

page 126 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

63

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!‘ Section 3.1 Notes On Inlining

Impact of inlining on data and control flow analysis

“Flow Analysis, recommended for levels A-C, is impacted by Inlining (ust
whatare the data coupling and control coupling relations hips in the
executable code?).”

“The data coupling and control coupling relations hips can transfer from the
inlined component to the inlining component.”

As a result, “data coupling and control coupling s hould take into
account the inlining of code including call tree and data setAise
analysis.”

Page 127 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

!‘ Section 3.1 Notes On Inlining

Impact of inlining on stack usage and timing analysis

“Since inline expansion can eliminate parameter passing, this can effect the
amount of information pushed on the stack as well as the total amount of
code generated.”

“This, in turn, can effect the stack usage and the timing analysis.”

As a result, “stack usage and timing analysis should take into account
the inlining of code.”

page 128 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

64

FAA National Software Conference, May 2002

Gary Daugherty

Object Oriented Guidelines

!5 Section 3.1 Notes On Inlining

Impact of inlining on structural coverage analysis

“For inline expansion in level Asoftware, source code should be traced to
objectcode ateach point of expansion.”

“Inline expansion may not be handled identically at different points of
expansion.”

“This can be especially true when inlined code is optimized.”

As a result, “if object code is removed or objectcode is added, as
determined by the source to object code trace, then structural
coverage mustbe verified separately for each expansion.”

And, “structural coverage tools [may] need to know what will be
inlined and what will not be inlined when inlining is requested.”

Page 129 AVSI Guide to the Certification of Systems with Embedded Object-Oriented Software

65

