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���� Digital Flight
What Is An

Operating System?

A program that acts as an intermediary
between a user of a computer and the
computer hardware.

Operating system goals:
• execute user programs and make

solving user problems easier

• make the computer system
convenient to use

• use the computer hardware in an
efficient manner.
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���� Digital Flight Computer
System Components

1. Hardware – provides basic computing resources
(CPU, memory, I/O devices).

2. Operating system – controls and coordinates the
use of the hardware among the various
application programs for the various users

3. Applications programs – define ways to use
system resources  to implement the computing
needs of the users (compilers, database
systems, avionics, business programs).
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���� Digital Flight
Overview Of

System Components

               OS KERNAL

PHYSICAL HARDWARE

Application 1 Application 2

API
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���� Digital Flight Operating
System Definitions

Resource allocator – manages and
allocates resources.

Control program – controls the execution
of user programs and operations of I/O
devices .

Kernel – the one program running at all
times (all else being application
programs).
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���� Digital Flight Needed OS Features
For Multi -programming

• Memory management – the system must
allocate the memory to several
processes.

• CPU scheduling – the system must
choose among several processes ready
to run.

• I/O routine supplied by the system.

• Allocation of devices.
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���� Digital Flight
Common

OS Components

Initialization Process
Management

Memory
Management

I/O System
Management

Protection
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���� Digital Flight
System

Initialization

• Operating systems designed to run on many
machines; system must be configured for
each specific target.

• Board Support Package needs specifics of the
configuration of the hardware system.

• Booting – start a computer by loading the
kernel.

• Bootstrap program – code stored in ROM
locates kernel, loads it into memory, and
execution.
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���� Digital Flight Process Management

• A process - program in execution.  A process
needs resources (CPU time, memory, files, and
I/O devices) to accomplish its task.

• The operating system is responsible for the
following activities in connection with process
management.
– Process creation and deletion.
– process suspension and resumption.
– Provision of mechanisms for:

• process synchronization
• process communication
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���� Digital Flight
Main-Memory
Management

• Memory - large array of words or bytes, each with its
own address, a repository of quickly accessible data
shared by CPU and I/O devices.

• Main memory is a volatile storage device.  It loses its
contents in the case of system failure (unless non-
volatile is use).

• The operating system is responsible for the following
activities in connections with memory management:
– Keep track of which parts of memory are currently

being used and by whom.
– Decide which processes to load when memory

space becomes available.
– Allocate and de-allocate memory space as needed.
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���� Digital Flight
Secondary

Memory Management

• Since main memory (primary storage) is volatile & too
small for all data and programs permanently, the
computer system must provide secondary storage to
back up main memory.

• Most modern computer systems use other types of
slower memory, for both programs and data.

• The operating system is responsible for the following
activities in connection with disk management:
– Free space management
– Storage allocation
– Scheduling
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���� Digital Flight I/O System Management

• The I/O system consists of:
– A buffer-caching system
– A general device-driver interface
– Drivers for specific hardware devices
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���� Digital Flight Protection System

• Protection refers to a mechanism for
controlling access by programs,
processes, or users to both system
and user resources.

• The protection mechanism must:
– distinguish between authorized and

unauthorized usage.
– specify the controls to be imposed.
– provide a means of enforcement.
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���� Digital Flight
Operating

System Services

• Program execution – system capability to
load a program into memory and to run it.

• I/O operations – user programs unable to
execute I/O operations directly, OS must
provides means to perform I/O.

• File-system manipulation – program
capability to read, write, create, and delete
files.
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���� Digital Flight
Operating

System Services

• Communications – exchange of information
between processes executing either on the
same computer or on different systems tied
together by a network or bus.  Implemented
via shared memory or message passing.

• Error detection – ensure correct computing
by detecting errors in the CPU and memory
hardware, in I/O devices, or in user
programs.
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���� Digital Flight
Operating System

Functions (Cont’d)

Additional OS functions to ensure efficient
system operations:

• Resource allocation – allocating resources
to multiple users or multiple jobs running at
the same time.

• Accounting – keep track of and record which
users use how much and what kinds of
computer resources.

• Protection – ensuring that all access to
system resources is controlled.

Slide
18
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���� Digital Flight Processes

• Process Concept
• Process Scheduling
• Operation on Processes
• Cooperating Processes
• Interprocess Communication
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���� Digital Flight Process Concept

• An operating system executes a variety
of application programs or tasks

• Process – a program in execution;
process execution progresses in
sequential fashion.

• A process includes:
– program counter
– stack
– data section
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���� Digital Flight Process State

• As a process executes, it changes state
– new:  The process is being created.
– running:  Instructions are being

executed.
– waiting:  The process is waiting for

some event to occur.
– ready:  The process is waiting to be

assigned.
– terminated:  The process has finished

execution.
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���� Digital Flight Diagram of Process State
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���� Digital Flight
Process

Control Block (PCB)

Information associated with each
process.

– Process state
– Program counter
– CPU registers
– CPU scheduling information
– Memory-management information
– Accounting information
– I/O status information
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���� Digital Flight
Process

Control Block (PCB)
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���� Digital Flight
CPU Switch

From Process to Process
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���� Digital Flight
Process

Scheduling Queues

• Job queue – set of all processes in the
system.

• Ready queue – set of all processes
residing in main memory,
ready and waiting to execute.

• Device queues – set of processes
waiting for an I/O device.

• Process migration between the various
queues.
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���� Digital Flight
Ready Queue And Various

I/O Device Queues
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���� Digital Flight
Representation

of Process Scheduling
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���� Digital Flight Schedulers

• Long-term scheduler (or job
scheduler) – selects which processes
should be brought into the ready
queue.

• Short-term scheduler (or CPU
scheduler) – selects which process
should be executed next and allocates
CPU.
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���� Digital Flight
Addition of Medium

Term Scheduling
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���� Digital Flight Schedulers (Cont.)

• Short-term scheduler is invoked very frequently
(milliseconds)���� (must be fast).

• Long-term scheduler is invoked very
infrequently (seconds, minutes) ���� (may be
slow).

• The long-term scheduler controls the degree of
multiprogramming.

• Processes can be described as either:
– I/O-bound process – spends more time doing

I/O than computations, many short CPU
bursts.

– CPU-bound process – spends more time
doing computations; few very long CPU
bursts.
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���� Digital Flight Context Switch

• When CPU switches to another
process, the system must save the
state of the old process and load the
saved state for the new process.

• Context-switch time is overhead; the
system does no useful work while
switching.

• Time dependent on hardware support.
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���� Digital Flight Process Termination

• Process executes last statement and
asks the operating system to
terminate it (exit).
– Process’ resources are de-allocated by

operating system.
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���� Digital Flight Cooperating Processes

• Independent process cannot affect or
be affected by the execution of
another process.

• Cooperating process can affect or be
affected by the execution of another
process

• Advantages of process cooperation
– Information sharing
– Computation speed-up
– Modularity
– Convenience
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���� Digital Flight
Producer-Consumer

Problem

• Paradigm for cooperating processes,
producer process produces information that
is consumed by a consumer process.

– unbounded-buffer places no practical limit
on the size of the buffer.

– bounded-buffer assumes that there is a
fixed buffer size.
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���� Digital Flight Topics

Definitions
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���� Digital Flight
Interprocess

Communication (IPC)

• Mechanism for processes to communicate and
synchronize their actions.

• Message system – processes communicate
with each other without resorting to shared
variables.

• IPC facility provides two operations:
– send(message) – message size fixed or

variable
– receive(message)
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���� Digital Flight IPC (Cont’d)

• If P and Q wish to communicate need to:
– establish a communication link between

them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware

bus)
– logical (e.g., logical properties)
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���� Digital Flight
Implementation

Questions

• How are links established?

• Can a link be associated with more than two
processes?

• How many links can there be between every
pair of communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can
accommodate fixed or variable?

• Is a link unidirectional or bi-directional?
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���� Digital Flight Direct Communication

• Processes must name each other
explicitly:
– send (P, message) – send a message to

process P
– receive(Q, message) – receive a

message from process Q
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���� Digital Flight
Direct

Communication (Cont’d)

• Properties of communication link
– Links are established automatically.
– A link is associated with exactly one

pair of communicating processes.
– Between each pair there exists exactly

one link.
– The link may be unidirectional, but is

usually bi-directional.
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���� Digital Flight
Indirect

Communication

• Messages are directed and received from mailboxes
(also referred to as ports).
– Each mailbox has a unique id.
– Processes communicate only if they share a

mailbox.

• Properties of communication link
– Link established if processes share a common

mailbox
– A link may be associated with many processes.
– Each pair of processes may share several

communication links.
– Link may be unidirectional or bi-directional.
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���� Digital Flight
Indirect

Communication (Cont’d)

• Operations
– create a new mailbox
– send and receive messages through

mailbox
– destroy a mailbox
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���� Digital Flight
Indirect

Communication (Cont’d)

• Mailbox sharing
– P1, P2, and P3 share mailbox A.
– P1, sends; P2 and P3 receive.
– Who gets the message?

• Solutions
– Allow a link to be associated with at most

two processes.
– Allow only one process at a time to

execute a receive operation.
– Allow the system to select arbitrarily the

receiver.  Sender is notified who the
receiver was.
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���� Digital Flight Buffering

• Queue of messages attached to the
link; implemented in one of three
ways.
1.Zero capacity – 0 messages

Sender must wait for receiver
(rendezvous).

2.Bounded capacity – finite length of n
messages
Sender must wait if link full.

3.Unbounded capacity – infinite length
Sender never waits.
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���� Digital Flight
Exception Conditions

 – Error Recovery

• Process terminates
• Lost messages
• Scrambled Messages
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���� Digital Flight Topics

Definitions
Overview
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���� Digital Flight
Process

Synchronization

• Background
• The Critical-Section Problem
• Synchronization Hardware
• Semaphores
• Classical Problems of Synchronization
• Critical Regions
• Monitors
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���� Digital Flight Background

• Concurrent access to shared data may result
in data inconsistency.

• Maintaining data consistency requires
mechanisms to ensure the orderly execution
of cooperating processes.

• Shared-memory solution to bounded-butter
problem allows at most n – 1 items in buffer
at the same time.  A solution, where all N
buffers are used is not simple.
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���� Digital Flight
The Critical-Section

Problem

• n processes all competing to use some shared
data

• Each process has a code segment, called
critical section, in which the shared data is
accessed.

• Problem – ensure that when one process is
executing in its critical section, no other
process is allowed to execute in its critical
section.
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���� Digital Flight
Solution to

Critical-Section Problem

1. Mutual Exclusion.  If process Pi is
executing in its critical section, no
other processes can be executing in
their critical sections.

2. Progress.  If no process is executing in
its critical section and there exist some
processes that wish to enter their
critical section, then the selection of the
processes that will enter the critical
section next cannot be postponed
indefinitely.
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���� Digital Flight
Solution to

Critical-Section Problem

3. Bounded Waiting.  A bound must exist
on the number of times that other
processes are allowed to enter their
critical sections after a process has
made a request to enter its critical
section and before that request is
granted.

Assume that each process executes at
a nonzero speed
No assumption concerning relative
speed of the n processes.
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���� Digital Flight Semaphore

• Synchronization tool that does not
require busy waiting.

• Semaphore S – integer variable
• can only be accessed via two

indivisible (atomic) operations
wait (S):  while S≤≤≤≤ 0 do no-op;

S := S – 1;

signal (S): S := S + 1;
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���� Digital Flight
Semaphore

Implementation

• Assume two simple operations:
– block suspends the process that

invokes it.
– wakeup(P) resumes the execution of a

blocked process P.
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���� Digital Flight Deadlock

• Deadlock – two or more processes are waiting
indefinitely for an event that can be caused by
only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

 ����  ����
signal(S); signal(Q);
signal(Q) signal(S);
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���� Digital Flight Starvation

• Starvation  – indefinite blocking.
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���� Digital Flight
Classical Problems
of Synchronization

• Bounded-Buffer Problem
• Readers and Writers Problem
• Dining-Philosophers Problem
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���� Digital Flight
Dining-Philosophers

Problem
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���� Digital Flight Critical Regions

• High-level synchronization construct
• A shared variable v of type T, is declared as:

var v: shared T
• Variable v accessed only inside statement

region v when B do S

where B is a Boolean expression.
While statement S is being executed, no other
process can access variable v.
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���� Digital Flight Critical Regions (Cont.)

• Regions referring to the same shared
variable exclude each other in time.

• When a process tries to execute the region
statement, the Boolean expression B is
evaluated.  If B is true, statement S is
executed.  If it is false, the process is delayed
until B becomes true and no other process is
in the region associated with v.
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���� Digital Flight Monitors

• High-level synchronization construct
that allows the safe sharing of an
abstract data type among concurrent
processes.
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���� Digital Flight Monitors (Cont’d)

• To allow a process to wait within the monitor, a
condition variable must be declared, as

var x, y: condition
• Condition variable can only be used with the

operations wait and signal.
– The operation

x.wait;
means that the process invoking this operation
is suspended until another process invokes

x.signal;
– The x.signal operation resumes exactly one

suspended process.  If no process is
suspended, then the signal operation has no
effect.
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���� Digital Flight Deadlocks

• System Model
• Deadlock Characterization
• Methods for Handling Deadlocks
• Deadlock Prevention
• Deadlock Avoidance
• Deadlock Detection
• Recovery from Deadlock
• Combined Approach to Deadlock

Handling
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���� Digital Flight The Deadlock Problem

• A set of blocked processes each
holding a resource and waiting to
acquire a resource held by another
process in the set.

• Example
– System has 2 tape drives.
– P1 and P2 each hold one tape drive and

each needs another one.
• Example

– semaphores A and B, initialized to 1
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���� Digital Flight Bridge Crossing Example

• Traffic only in one direction.
• Each section of a bridge can be viewed as a resource.
• If a deadlock occurs, it can be resolved if one car backs

up (preempt resources and rollback).
• Several cars may have to be backed up if a deadlock

occurs.
• Starvation is possible.
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���� Digital Flight System Model

• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi
instances.

• Each process utilizes a resource as
follows:
– request
– use
– release
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���� Digital Flight
Deadlock

Characterization

• Mutual exclusion:  only one process at a time
can use a resource.

• Hold and wait:  a process holding at least one
resource is waiting to acquire additional
resources held by other processes.

• No preemption:  a resource can be released
only voluntarily by the process holding it, after
that process has completed its task.

Deadlock can arise if four conditions hold
simultaneously.:
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���� Digital Flight
Deadlock

Characterization (Cont’d)

• Circular wait:
– there exists a set {P0, P1, …, P0} of

waiting processes such that P0 is
waiting for a resource that is held by
P1, P1 is waiting for a resource that is
held by P2, …, Pn–1 is waiting for a
resource that is held by Pn, and Pn is
waiting for a resource that is held by P0.
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���� Digital Flight
Resource-Allocation

Graph

• V is partitioned into two types:
– P = {P1, P2, …, Pn}, the set consisting of all

the processes in the system.

– R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system.

• request edge – directed edge P1 →→→→ Rj

• assignment edge – directed edge Rj →→→→ Pi

A set of vertices V and a set of edges E.
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���� Digital Flight
Resource-Allocation

Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj Pi

Pi

Rj

Rj
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���� Digital Flight
Example of a Resource

Allocation Graph
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���� Digital Flight
Resource Allocation

Graph With A Deadlock
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���� Digital Flight
Resource Allocation Graph

With A Cycle But No Deadlock
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���� Digital Flight Basic Facts

• If graph contains no cycles ���� no
deadlock.

• If graph contains a cycle ����
– if only one instance per resource type,

then deadlock.
– if several instances per resource type,

possibility of deadlock.
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���� Digital Flight
Methods for

Handling Deadlocks

• Ensure that the system will never
enter a deadlock state.

• Allow the system to enter a deadlock
state and then recover.

• Ignore the problem and pretend that
deadlocks never occur in the system;
used by most operating systems.
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���� Digital Flight Deadlock Prevention

• Mutual Exclusion – not required for
sharable resources; must hold for
nonsharable resources.

• Hold and Wait – must guarantee whenever
a process requests a resource, it does not
hold any other resources.
– Require process to request and get all its

resources before execution
– Low resource utilization; starvation

possible.

Restrain the ways request can be made.
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���� Digital Flight
Deadlock

Prevention (Cont.)

• No Preemption –
– If a process holding some resources

requests another resource that can’t be
immediately allocated to it, then process
releases all resources currently held .

– Process restarted only when it can regain
its old resources, as well as the new ones
it requests.

• Circular Wait – impose a total ordering of all
resource types, requires each process
requests resources in increasing order of
enumeration.
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���� Digital Flight Deadlock Avoidance

• Simplest and most useful model
requires each process declare
maximum number of resources of each
type that it may need.

• The deadlock-avoidance algorithm
dynamically examines the resource-
allocation state to ensure no circular-
wait condition.

• Resource-allocation state is number of
available and allocated resources, and
maximum demands of processes.
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���� Digital Flight Safe State

• When process requests available
resource, system determines if immediate
allocation leaves the system in a safe
state.

• System is in safe state if there exists a
safe sequence of all processes.
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���� Digital Flight Safe State

• Sequence <P1, P2, …, Pn> is safe if for
each Pi, the resources that Pi can still
request satisfied by currently available
resources + resources held by all the Pj,
with j<i.
– If Pi resource needs not immediately available,

then Pi can wait until all Pj have finished.
– When Pj  finishes,  Pi obtains needed

resources, executes, returns allocated
resources, and terminates.

– When Pi terminates, Pi+1 can obtain its needed
resources, and so on.
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���� Digital Flight Basic Facts

• If a system is in safe state ���� no
deadlocks.

• If a system is in unsafe state ����
possibility of deadlock.

• Avoidance ���� ensure that a system will
never enter an unsafe state.
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���� Digital Flight
Safe, Unsafe , and

Deadlock State Space
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���� Digital Flight Resource-Allocation
Graph For Deadlock Avoidance
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���� Digital Flight
Unsafe State In A Resource

Allocation Graph
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���� Digital Flight Deadlock Detection

• Allow system to enter deadlock state
• Detection algorithm
• Recovery scheme
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���� Digital Flight
Detection-Algorithm

Usage

• When, and how often, to invoke depends on:
– How often a deadlock is likely to occur?
– How many processes will need to be

rolled back?
• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily,
there may be many cycles in the resource
graph and so we would not be able to tell
which of the many deadlocked processes
“caused” the deadlock.
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���� Digital Flight
Recovery from Deadlock:

  Process Termination

• Abort all deadlocked processes.
• Abort one process at a time until the

deadlock cycle is eliminated.
• In which order should we choose to abort?

– Priority of the process.
– How long process has computed, and how

much longer to completion.
– Resources the process has used.
– Resources process needs to complete.
– How many processes will need to be

terminated.
– Is process interactive?
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���� Digital Flight Recovery from Deadlock:
  Resource Preemption

• Selecting a victim – minimize cost.
• Rollback – return to some safe state,

restart process from that state.
• Starvation –  same process may

always be picked as victim, include
number of rollback in cost factor.
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���� Digital Flight
Combined Approach

to Deadlock Handling

• Combine the three basic approaches
– prevention
– avoidance
– detection

   allowing the use of the optimal approach for
each of resources in the system.

• Partition resources into hierarchically
ordered classes.

• Use most appropriate technique for handling
deadlocks within each class.
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���� Digital Flight Topics

Definitions
Overview
 Common OS Components

-System Initialization
-Process Management
-Memory Management
-I/O System Management
-Protection

System Services and
Functions

Processes
Inter-process
Communication
Process
Synchronization
Memory Management
I/O

Safety-critical
Specifics (Green Hills
Software Inc.)*
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���� Digital Flight
Memory

Management

• Background
• Logical versus Physical Address

Space
• Swapping
• Contiguous Allocation
• Paging
• Segmentation
• Segmentation with Paging

Slide
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���� Digital Flight Background

• Program must be brought into
memory and placed within a process
for it to be executed.

• Input queue – collection of processes
on the disk that are waiting to be
brought into memory for execution.

• User programs go through several
steps before being executed.
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���� Digital Flight
Binding of Instructions

and Data to Memory

• Compile time:  If memory location known a
priori, absolute code can be generated; must
recompile code if starting location changes.

• Load time:  Must generate relocatable code if
memory location is not known at compile time.

• Execution time:  Binding delayed until run time
if the process can be moved during its
execution from one memory segment to
another.  Need hardware support for address
maps (e.g., base and limit registers).
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���� Digital Flight Dynamic Linking

• Linking postponed until execution
time.

• Small piece of code, stub, used to
locate the appropriate memory-
resident library routine.

• Stub replaces itself with the address
of the routine, and executes the
routine.

• Operating system needed to check if
routine is in processes’ memory
address.
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���� Digital Flight
Logical vs. Physical

Address Space

• The concept of a logical address space that
is bound to a separate physical address
space is central to proper memory
management.
– Logical address – generated by the CPU;

also referred to as virtual address.
– Physical address – address seen by the

memory unit.
• Logical and physical addresses are the same

in compile-time and load-time address-
binding schemes; logical (virtual) and
physical addresses differ in execution-time
address-binding scheme.
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���� Digital Flight
Memory-Management

Unit (MMU)

• Hardware device that maps virtual to
physical address.

• In MMU scheme, the value in the
relocation register is added to every
address generated by a user process
at the time it is sent to memory.

• The user program deals with logical
addresses; it never sees the real
physical addresses.
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���� Digital Flight Swapping

• A process can be swapped temporarily out of
memory to a backing store, and then brought
back into memory for continued execution.

• Roll out, roll in – swapping variant used for
priority-based scheduling algorithms; lower-
priority process is swapped out so higher-
priority process can be loaded and executed.

• Major part of swap time is transfer time; total
transfer time is directly proportional to the
amount of memory swapped.
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���� Digital Flight
Schematic View

of Swapping
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���� Digital Flight Contiguous Allocation

• Main memory usually into two partitions:
– Resident operating system, usually held in low

memory with interrupt vector.
– User processes then held in high memory.

• Single-partition allocation
– Relocation-register scheme protects user

processes from each other, and from changing
operating-system code and data.

– Relocation register contains value of smallest
physical address; limit register contains range
of logical addresses – each logical address
must be less than the limit register.
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���� Digital Flight
Contiguous

Allocation (Cont.)

• Multiple-partition allocation
– Hole – block of available memory;

holes of various size are scattered
throughout memory.

– When a process arrives, it is allocated
memory from a hole large enough to
accommodate it.

– Operating system maintains
information about:
a) allocated partitions    b) free
partitions (hole)
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���� Digital Flight Example

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9
process

10
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���� Digital Flight
Dynamic Storage

Allocation Problem

• First-fit:  Allocate first hole big enough.

• Best-fit:  Allocate smallest hole big enough;
must search entire list, unless ordered by
size.

• Worst-fit:  Allocate the largest hole; must also
search entire list.

First-fit and best-fit better than worst-
fit in terms of speed and storage
utilization.
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���� Digital Flight Fragmentation

• External fragmentation – enough
memory space exists to satisfy a
request, but not contiguous.

• Internal fragmentation – allocated
memory slightly larger than requested
memory; size difference is memory
internal to partition, but not being used.
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���� Digital Flight Fragmentation

Reduce external fragmentation by
compaction
– Shuffle memory contents to place all free

memory together in one large block.

– Compaction is possible only if relocation is
dynamic, and is done at execution time.

– I/O problem
• Latch job in memory while it is involved in

I/O.
• Do I/O only into OS buffers.
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���� Digital Flight Paging

• Logical address space of a process can be
noncontiguous

• Divide physical memory into fixed-sized
blocks called frames (size is power of 2,
between 512 bytes and 8192 bytes).

• Divide logical memory into blocks of same
size called pages.

• Keep track of all free frames.
• To run a program of size n pages, need to

find n free frames and load program.
• Set up a page table to translate logical to

physical addresses.
• Internal fragmentation.
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���� Digital Flight
Address

Translation Scheme

• Address generated by CPU is divided
into:
– Page number (p) – used as an index

into a page table which contains base
address of each page in physical
memory.

– Page offset (d) – combined with base
address to define the physical memory
address that is sent to the memory
unit.
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���� Digital Flight
Address Translation

Architecture
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���� Digital Flight Paging Example



55

FAA National Software Conference, June 2001
RTOS Basics

      Cheryl Dorsey

Slide
109

���� Digital Flight
Implementation

of Page Table

• Page table kept in main memory.
• Page-table base register (PTBR) points

to the page table.
• Page-table length register (PRLR)

indicates size of the page table.
• Every data/instruction access requires

two memory accesses.  One for page
table - one for data/instruction.

• Two memory access problem solved by
use of fast-lookup hardware cache called
associative registers
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���� Digital Flight Associative Register

• Associative registers – parallel search

• Address translation (A´, A´´)
– If A´ is in associative register, get frame

# out.
– Otherwise get frame # from page table

in memory

Page # Frame #
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���� Digital Flight Memory Protection

• Memory protection implemented by
associating protection bit with each
frame.

• Valid-invalid bit attached to each entry
in the page table:
– “valid” indicates that the associated

page is in the process’ logical address
space, and is thus a legal page.

– “invalid” indicates that the page is not
in the process’ logical address space.
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���� Digital Flight
Two-Level

Page-Table Scheme
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���� Digital Flight
Address

Translation Scheme

• Address-translation scheme for a two-
level 32-bit paging architecture
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���� Digital Flight
Multilevel Paging
and Performance

• Each level stored as separate table in memory,
covering a logical address to a physical one may
take four memory accesses.

• Though time needed for one memory access is
quintupled, caching permits performance to
remain reasonable.



58

FAA National Software Conference, June 2001
RTOS Basics

      Cheryl Dorsey

Slide
115

���� Digital Flight
Comparing Memory

Management Strategies

• Hardware support
• Performance
• Fragmentation
• Relocation
• Swapping
• Sharing
• Protection
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���� Digital Flight Virtual Memory

• Background
• Demand Paging
• Performance of Demand Paging
• Page Replacement
• Page-Replacement Algorithms
• Allocation of Frames
• Thrashing
• Other Considerations
• Demand Segmenation
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���� Digital Flight Background

• Virtual memory – separation of user logical
memory from physical memory.
– Only part of the program needs to be in

memory for execution.
– Logical address space can therefore be

much larger than physical address space.
– Need to allow pages to be swapped in and

out.
• Virtual memory can be implemented via:

– Demand paging
– Demand segmentation
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���� Digital Flight Demand Paging

• Bring a page into memory only when it
is needed.
– Less I/O needed
– Less memory needed
– Faster response
– More users

• Page is needed ���� reference to it
– invalid reference ���� abort
– not-in-memory ���� bring to memory
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���� Digital Flight Page Fault

• If reference to a page, first reference will trap
OS ���� page fault

• OS looks at another table to decide:
– Invalid reference ���� abort.
– Just not in memory.

• Get empty frame.
• Swap page into frame, reset tables, validation

bit = 1.
• Restart instruction:  Least Recently Used

– block move
– auto increment/decrement location
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���� Digital Flight
What happens

if there is no free frame?

• Page replacement – find some page in
memory, but not really in use, swap it
out.
– algorithm
– performance – want an algorithm

which will result in minimum number
of page faults.

• Same page may be brought into
memory several times.
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���� Digital Flight Page Replacement

• Prevent over-allocation of memory by
modifying page-fault service routine to
include page replacement.

• Use modify (dirty) bit to reduce
overhead of page transfers – only
modified pages are written to disk.

• Page replacement completes
separation between logical memory
and physical memory – large virtual
memory can be provided on a smaller
physical memory.
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���� Digital Flight
Page-Replacement

Algorithms

• Want lowest page-fault rate.

• Evaluate algorithm by running it on a
particular string of memory references
(reference string) and computing the
number of page faults on that string.
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���� Digital Flight
Page-Replacement

Algorithms (Cont’d)

• First-In-First-Out   (FIFO) replaces the
oldest page

• Least Recently Used (LRU) replaces the
page that was not referenced for the
longest period of time

• Least Frequently Used (LFU) replaces page
that was referenced the least
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���� Digital Flight Topics

Definitions
Overview
 Common OS Components

-System Initialization
-Process Management
-Memory Management
-I/O System Management
-Protection

System Services and
Functions

Processes
Inter-process
Communication
Process
Synchronization
Memory Management
I/O Systems

Safety-critical
Specifics (Green Hills
Software Inc.)*
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���� Digital Flight I/O Systems

• I/O hardware
• Application I/O Interface
• Kernel I/O Subsystem
• Transforming I/O Requests to

Hardware Operations
• Performance
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���� Digital Flight I/O Hardware

• Incredible variety of I/O devices
• Common concepts

– Port
– Bus (daisy chain or shared direct

access)
– Controller (host adapter)

• I/O instructions control devices
• Devices have addresses, used by

– Direct I/O instructions
– Memory-mapped I/O
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���� Digital Flight Polling

• Determines state of device
– command-ready

– busy

– error

• Busy-wait cycle to wait for I/O from
device
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���� Digital Flight Interrupts

• CPU Interrupt request line triggered by I/O
device

• Interrupt handler receives interrupts
• Maskable to ignore or delay some interrupts
• Interrupt vector to dispatch interrupt to

correct handler
– Based on priority
– Some unmaskable

• Interrupt mechanism also used for
exceptions
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���� Digital Flight Interrupt-drive I/O Cycle

Slide
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���� Digital Flight Direct Memory Access

• Used to avoid programmed I/O for
large data movement

• Requires DMA controller

• Bypasses CPU to transfer data directly
between I/O device and memory
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���� Digital Flight Application I/O Interface

• I/O system calls encapsulate device
behaviors in generic classes

• Device-driver layer hides differences
among I/O controllers from kernel

• Devices vary in many dimensions
– Character-stream or block
– Sequential or random-access
– Sharable or dedicated
– Speed of operation
– read-write, read only, or write only
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���� Digital Flight Clocks and Timers

• Provide current time, elapsed time,
timer

• if programmable interval time used for
timings, periodic interrupts
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���� Digital Flight
Blocking and

Non-blocking I/O

• Blocking - process suspended until I/O
completed
– Easy to use and understand
– Insufficient for some needs

• Nonblocking - I/O call returns as much as
available
– User interface, data copy (buffered I/O)
– Returns quickly with count of bytes read

or written
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���� Digital Flight
Blocking and

Non-blocking I/O (Cont’d)

• Asynchronous - process runs while I/O
executes
– Difficult to use
– I/O subsystem signals process when I/O

completed
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���� Digital Flight Kernel I/O Subsystem

• Scheduling
– Some I/O request ordering via per-

device queue
– Some OSs try fairness

• Buffering - store data in memory while
transferring between devices
– To cope with device speed mismatch
– To cope with device transfer size

mismatch
– To maintain “copy semantics”
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���� Digital Flight Kernel I/O Subsystem

• Caching - fast memory holding copy of
data
– Always just a copy
– Key to performance

• Device reservation - provides exclusive
access to a device
– System calls for allocation and

deallocation
– Watch out for deadlock
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���� Digital Flight Error Handling

• OS can recover from read, device
unavailable, transient write failures

• Most return an error number or code
when I/O request fails

• Log system errors
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���� Digital Flight Kernel Data Structures

• Kernel keeps state info for I/O
components, including open file
tables, network connections, character
device state

• Many, many complex data structures
to track buffers, memory allocation,
“dirty” blocks

• Some use object-oriented methods
and message passing to implement I/O
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���� Digital Flight
I/O Requests to

Hardware Operations

• Consider reading a file from disk for a
process
– Determine device holding file
– Translate name to device

representation
– Physically read data from disk into

buffer
– Make data available to requesting

process
– Return control to process

Slide
140

���� Digital Flight Performance

• I/O a major factor in system
performance
– Demands CPU to execute device

driver, kernel I/O code
– Context switches due to interrupts
– Data copying
– Network traffic especially stressful
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���� Digital Flight Improving Performance

• Reduce number of context switches
• Reduce data copying
• Reduce interrupts by using large

transfers, smart controllers, polling
• Use DMA
• Balance CPU, memory, bus, and I/O

performance for highest throughput
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���� Digital Flight Topics

Definitions
Overview
 Common OS Components

-System Initialization
-Process Management
-Memory Management
-I/O System Management
-Protection

System Services and
Functions

Processes
Inter-process
Communication
Process
Synchronization
Memory Management
I/O

Safety-critical
Specifics (Green Hills
Software Inc.)*
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���� Digital Flight Safety Critical  Specifics

Safety-critical Architectures
Why protection?
Guaranteed Resource Availability
-  time
-  space

Kernal Determinism & interrupt Latency
High Availability
Access Control
Schedulabilty
Protected Device Driver
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���� Digital Flight Safety-Critical
Architectures

� Cyclic Executive
� Periodic task timeline
� Periods – harmonically related
� Manual Multi-Tasking

� Interrupt-Driven Architecture
� Tasks mapped to HW interrupts
� Tasks become ISR’s and HW

interrupt priorities enforce SW
Priority Scheduling
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���� Digital Flight
Safety-Critical
Architectures

� “No Tasking” run-time requirements
� Start-up/Initialization code
� Exception handling support
� Math library support
� Compiler support routines

� Block moves, etc.
� Deterministic execution time for all

services
� Multi-Language support
� Subset of a “general purpose” run-

time solution
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���� Digital Flight Safety-Critical
Architectures

� Single Application / Multi-Tasking
� Tasks scheduled using Priority-Based

Preemptive Scheduler
� Rate Monotonic Analysis (RMA) used to

select priorities
� Shorter period => Higher Priority

� Task Communication which prohibits
Priority Inversion

� Emulate “event-driven” tasks with
periodic “Sporadic Servers”
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���� Digital Flight Safety-Critical
Architectures

Multi-Tasking run-time requirements
� Priority-Based Preemptive Scheduler
� Highest Locker’s or Priority Ceiling Protocol

Semaphore
�Protection against Priority Inversion
�Minimum bounds on blocking time
�Enables task communication

� Deterministic execution time for all services
�Context Switch time
�Semaphore Give/Take
�No dynamic memory allocation

� Multi-Language support
� Subset of a “general purpose” run-time solution
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���� Digital Flight
Safety-Critical
Architectures

Multiple Multi-Tasking Applications with different
Criticality Levels
� Partitions developed/tested to appropriate

levels
� Failures in one Partition effect no other
� Multi-Tasking Architecture reqts apply within

a partition
�Priority-based Preemptive Scheduler
�Protection against Priority Inversion

� Partition scheduler enables time protection
� Partition cannot access another’s memory or

Kernel Objects (e.g. semaphores, tasks, etc.)
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���� Digital Flight
Safety-Critical
Architectures

Ada or C Application

Safety Level : A (High)

Virtual Address Space 1

DO-178B   Run-Time

Ada or C Application

Safety Level : C (Low)

Virtual Address Space 2

DO-178B RTOS (Protection)

Embedded Processor

FAILURE!!!

NO
EFFECT!

DO-178B Run-Time
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���� Digital Flight Safety-Critical
Architectures

� Protected RTOS requirements
� Provide “protected” partitions in time and space
� Utilize HW MMU to protect memory accesses
� Schedule tasks on a partition-basis as well as a

priority basis
� Multi-Tasking Architecture reqts apply within a

partition
� RTOS needs to protect itself from invalid accesses
� Deterministic execution time for all services
� Multi-Language Support
� Subset of a “general purpose” run-time solution
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���� Digital Flight Why Protection?

Kernel

Task B

Single Address Space

Task A

Task C
���

Task D
Task E

���

?    The Kernel is unaware!

• Corrupt the memory of other
tasks

Tasks running in a single address
space are free to:
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���� Digital Flight

Kernel

Task B

Single Address Space

Task A

Task C
���

Task D
Task E

� The Kernel can’t prevent it!

Why Protection?

• Corrupt the memory of other
tasks

• Corrupt the kernel

Tasks running in a single address
space are free to:
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���� Digital Flight

Kernel

Task B

Single Address Space

Task A

Task C
���

Task D
Task E

�

�

�

This can happen at any time

Why Protection?

• Corrupt the memory of other
tasks

• Corrupt the kernel
• Create intermittent bugs that

are difficult to reproduce and
correct

Tasks running in a single address
space are free to:
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���� Digital Flight

Kernel

Task B

Single Address Space

Task A

Task C
���

Task D
Task E

���

��

��

�� No Malicious coding needed...

Why Protection?

• Corrupt the memory of other
tasks

• Corrupt the kernel
• Create intermittent bugs that

are difficult to reproduce and
correct

• Cause complete system failure

Tasks running in a single address
space are free to:
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���� Digital Flight
Guaranteed Resource

Availability - Space Domain

• System divided into
virtual address spaces

• Each address space is
provided a quota of
physical memory

• Quota is hard currency
that can’t be forged,
inflated, or stolen

• No central memory store
in kernel!
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���� Digital Flight
Guaranteed Resource

Availability - Time Domain

• Tasks can be assigned
weight within priority level

• Tasks cannot steal additional
CPU time by spawning
confederate tasks

■ Tasks spawned by a task must
give up a portion of their CPU
time allocation
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���� Digital Flight
Guaranteed Resource

Availability Time Domain*

Real-life denial of service failures:

■ The data entry technician
and the X-ray exposure
modulator

■ Mars Pathfinder
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���� Digital Flight
Guaranteed Resource

Availability - Time Domain

■ Task schedulers have no concept
of CPU resource protection at the
address space level

■ RTOS should provide an optional
address space scheduler
following the ARINC 653 partition
scheduling model

■ System designer defines
execution windows for each
partition

■ When a partition is active, its CPU
resource is absolutely guaranteed

■ Provision for background partition
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���� Digital Flight

void
conventional_kernel_call(void
)
{
...
disable_interrupts();
<modify_kernel_data_structs>
enable_interrupts();
...

}

Kernel Determinism
and Interrupt Latency

• Interrupt disabling sequences
strewn about in the kernel cause
high priority interrupts to be
postponed

• Mutexes may be used in kernel,
potentially causing priority
inversion unbeknownst to
programmers

• Use of heuristics can fail in
pathological cases

Conventional
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���� Digital Flight
Kernel Determinism and

Interrupt Latency

• Kernel should never disable interrupts in
kernel calls - highest priority interrupts
serviced with absolute minimum latency;
scheduler timer interrupt handling informs
kernel to get back into scheduler upon exit
from service call.

• All service calls must have short, bounded
computation times and are
preemptible/restartable for operations which
take longer.

• No mutexes used in the kernel
• No heuristics
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���� Digital Flight High Availability

• Task, Address Space
restartability

• Software Watchdog, health
monitor

• Connection Manager
– Multiprocessor Distributed

Processing
– Built-in Heartbeat
– Operated over LAN,

backplane
– Enables a variety of high

availability models,
redundant/standby nodes,
hot fail-over
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���� Digital Flight

AddressSpace foo

Object 10

Task HealthMonitor

Entrypoint HealthFunc

Priority 200

EndObject

Object 11

Link bar

OtherObjectNumber 10

EndObject

EndAddressSpace

AddressSpace bar

Object 10

Task EtherTask

Entrypoint EtherStart

EndObject

Object 11

IODevice etherdev

EndObject

EndAddressSpace

Access Control

• Kernel Objects (Task,
Connection, etc): Static Boot
table defines ownership for
Address Spaces and thus
mandatory access control of
objects (enforced by kernel)

■ Data (Memory): MMU protection
enables mandatory access control

■ Discretionary access control (e.g.
Unix file) is not sufficient – no
guarantee that improper access can’t
occur
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���� Digital Flight Schedulability

• Need to account for all execution time:
not only code execution but also
message transfers

• Typical solution for priority inversion,
priority inheritance mutex, can cause
chained blocking: very difficult to
perform RMA and leads to an
inefficient system:
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���� Digital Flight Schedulability

• Highest Locker Semaphore prevents
priority inversion and chained blocking

• HL Semaphore assigned a fixed priority –
priority of the highest priority task that
contends for the resource

• When task obtains HL semaphore, task
priority is immediately elevated to HL
priority; task never blocks on HL
semaphore

• Results in a more efficient system:
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���� Digital Flight Schedulability

RMA Example Comparing Highest Locker
and Priority Inheritance Semaphore:

C represents computation time.
P represents period.

T1 : C1 = 60; P1 = 100
T2 : C2 = 40; P2 = 1000
T3 : C3 = 60; P3 = 1000

Compute Actual Utilization:
U(1) = 60/100 = .6
U(2) = .6 + 40/1000 = .64
U(3) = .64 + 60/1000 = .70

Compute Maximum Utilization (RMA bound),
where RMA bound U(n) = n(2**(1/n)-1).

U(1) = 1.0
U(2) = .828
U(3) = .779

Since .6 < 1.0, .64 < .828, .70 < .779, this
system is SCHEDULABLE.
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���� Digital Flight Schedulability

Now, let's assume there are 2 semaphores
shared between the tasks in the following manner:

T1 and T2 access S1 and hold it for 25.
T1 and T3 access S2 and hold it for 25.

RMA forces you to add the maximum blocking factor!

Actual Utilization with PI:
For T1, each Semaphore take may cause a block:

U(1) = .6 + .5 = 1.1 > 1.0! NOT SCHEDULABLE!!

Actual Utilization with HL:
Only one of S1 or S2 could be held when T1 is ready:

U(1) = 0.6 + 0.25 = 0.85 < 1.0, so SCHEDULABLE!!
T2’s blocking factor is also 25 since T3 may be

running at elevated priority when T2 becomes runnable:
U(2) = .6 + .04 + 25/1000 = 0.665 < 0.828, so SCHEDULABLE!!

T3 has no blocking factor:
U(3) = .6 + .04 + 0.06 + 0 = 0.70 < 0.779, so SCHEDULABLE!!
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���� Digital Flight

• User Mode Device Drivers
– User Mode Task

• Runs in its own virtual address space
• Does nearly all of the work

– Memory mapped I/O accessed via virtual memory
mapping

– Additional protection for more complicated devices
• Devices that use DMA
• Errant DMA programming could crash Kernel
• Controls DMA so it can only read/write Memory that

the User Mode Task owns
– Interrupt Service Routine

• Short
• Services the physical device interrupt

Protected
Device Drivers
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���� Digital Flight

• User Mode Device Drivers
– Completely secure

• Can’t corrupt OS or any other Address Space or
device

• Can’t be corrupted by any other Address Space or
device

– Written in a high level language
• Easier to program
• Easier to debug
• Runtime error detection (e.g. stack overflow)
• Performance analysis

– Fully preemptible: creates no interrupt shadow

Protected
Device Drivers
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���� Digital Flight
Protected

Device Drivers

Kernel

Application
Task

Device Driver

User Task

User Mode Device Driver

ISR

Protected Address Space

Send / Receive Data
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���� Digital Flight

■ Protection in the Time Domain
■ Many RTOS vendors don’t understand RMA
■ Task utilization support
■ schedulability analysis
■ Partition scheduler support (ARINC-653)
■ Bounded time kernel calls force smaller “subsets”
■ Hidden execution time (message passing execution

time gets attributed to sender? receiver? both?)
■ Long Kernel calls (Close/Kill partition) pass work off

to System Tasks
■ Non-deterministic resource reclamation
■ Cache?  - Instruction Cache?

Common Defects
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���� Digital Flight

■ Protection in the Space Domain

■ Dynamic manipulation of the MMU complicates
verification efforts

■ Using kernel memory pool for resource allocation
allows other partitions to effect resource availability

■ Single protected segment for all “Code”, requires
analysis of errant jumps

■ Preemptible kernels use task stacks for system calls
■ Dynamic installation of device drivers requires

privileged user code

Common Defects


