FAA National Software Conference
Software Verification

&

(_ "> Didital Fliaht FAA National
Q D—Soﬁwaneitanierence

Verification
Within An RTCA DO-178B
Framework

Presented by: Cheryl Dorsey
Digital Flight, Principal
email: dorsey@erols.com

A Verification—Within a DO-178B
Framework

Presentation Objectives:

* Understand the relationship of DO-178B
verification tables A-3, A-4, A-5, A-6 to the
" . software development and test tables A-2
and A-6
|
'F\' « Understand the objectives of tables A-2
i through A-7

ﬁ N * Setting up for success
Slide

- i

Cheryl Dorsey

FAA National Software Conference
Software Verification

@ Software Development Table A-2

Development and Test Procedures

Table A-2

, Table A-6
« High Level Regs Code/Integration
« Derived High) Integration/Test
Level Regs Design Descr ¢

* Architecture

« Derived Low * Source Code « Test Cases and
Level Regs « Executable Object procedures

« Derived Reqs Code « Test Results

Four Annex Tables For Verification of
Development and Test Processes

I Table A-6

« High Level Regs
« Derived High Level .
Reqs Design Descr
« Verification * Architecture
Fesilic * Low Level Reqs -« Source Code
« Derived Regs - Executable Object * Test Cases and]
« Verification Code Procedures '
Results « Verification Results * Test Results
« Verification Results

Cheryl Dorsey

FAA National Software Conference
Software Verification

@) Diaital Flicht Terminology

: High level: A requirement that is traceable to
a system requirement states what
the software must do, not how it

will do it.

Derived: A requirement that stemmed
from a design decision—may not
directly trace backwards, but
should trace forwards.

Decomposed: A requirement (system, or
high-level) that is satisfied by .
the combination of two or more L
lower-level requirements.

Terminology (Cont’'d)

Design Description: The combination or low-level
requirements and
architecture. May include a
data dictionary.

Low-level Req.: States how the high-level
requirement is met.

Architecture: Diagram showing how the
components of a system are
tied together. Usually
presented from a control and '
a data flow viewpoint.

Cheryl Dorsey

FAA National Software Conference
Software Verification

@ Developer’'s Road Map

Planning

SW Requirements Data
— High Level Requirements

— Derived High Level
Requirements

High-level requirements

— Comply with systems requirements
Accurate and consistent
Compatible with target
Verifiable and traceable to system
Conform to standards
Algorithms accurate

How Many Points?

Cheryl Dorsey

FAA National Software Conference
Software Verification

@ "> Diital Flicht

How Many Points?

The Importance of High Level
Requirements Specification

- More likely to build what you want,
not what you specify

- More likely to code correctly the first time
- Test what you mean, not what you wrote
- SQA will be more likely to approve

- Less changes in development, and in
production

- Save cost and schedule

Cheryl Dorsey

FAA National Software Conference
Software Verification

(_ " Dicital Fliaht Software
'\@ '_ High Level Requirements (Cont'd)
N

g : Requirements address:
- Functionality
- External Interfaces
- Performance
- Quality Attributes
- Design Constraints

- Safety/security

Software
High Level Requirements . . .

Should NOT address design

- Partitioning software into modules

- Allocating functions into modules

- Flow of information or control between

‘p/‘ modules
ip‘ Should NOT address project management

‘" - Cost
- Schedule
- Quality assurance
- Software development methodology

Cheryl Dorsey

FAA National Software Conference
Software Verification

(_ "> Didital Flicht Criteria for Good
'\@ '_ High Level Requirements
N

: : Assure high-level requirements are:
- Correct
- Uniquely identified
- Non-ambiguous
- Consistent

. Traceable
- Verifiable

Example of Ambiguity

- “Aircraft that are threats have either a
known status or the potential to enter
restricted airspace within 5 minutes
shall raise an alert.”

- “Aircraft that are either threats and
have a known status or have the
potential to enter restricted . ..”

- “Aircraft that are threats and either
have an unknown status or the
“potential to enter restricted . . .”

Cheryl Dorsey

FAA National Software Conference
Software Verification

Not WOW or Wheel Speed greater than

DeMorgans Theorem

Not (A or B) = Not A and Not B

Problems

»* Diaital Flioht
@) " translating English to PDL

Not (A) or B?

Correct

No tool or procedure assures
correctness
(a fool with a tool is still a fool)

Mathematical algorithms

Complete (No TBDs)

Traceable

Trace-up to system level req,
TSO req

Trace down to data derived
from high level req

Slide
16

Cheryl Dorsey

Consistent

Conflicting characteristics
(blue/green)

Conflicting logic (A or B, A
and B)

Different terms—(cue, prompt)

Verifiable

Each requirement is stated in
quantifiable terms

For each requirement, can a test !
be formulated that will
unambiguously answer whether
the requirement has been met?

FAA National Software Conference
Software Verification

Requirements Traceability

Software _ Code/
Req’'mts Module

2.4.3 2. Correlate

' Associate
|
! . 3. Track
update
[
Track
| initiate

Slide 17

Forwards Traceability

MM
ade0 Cl el

All intended functionality is implemented

Backwards Traceability

e e '

Nothing but the intended functionality is implemented

Slide 18

o - = e e e e

Cheryl Dorsey

FAA National Software Conference
Software Verification

s

-

@ *¥ Diaital Ficht Requirements Verifiability

Non-verifiable Verifiable

The software shall The software shall compute
provide accuracy aircraft position with an
sufficient to support | accuracy of:

EHE el e + 20 ft. in the horizontal
+ 10 ft. in the vertical

The system shall respond to:

The software shall « Safety critical pilot actions

provide response to in less than 40 milliseconds
pilots immediately

Non safety critical pilot
actions in less than 30
seconds

Non-testable Requirements

The software shall be robust

The software shall degrade gracefully
under stress

The software shall be developed in
accordance with modern programming
practices

The software shall provide the necessary
processing under all modes of operations

Computer memory utilization shall be .
minimized to accommodate future growth L]

slide - The software shall be easy to use

Cheryl Dorsey

FAA National Software Conference

Software Verification

- Sufficient

- Modular

- Achievable

- Adequate

- Efficient

- Accomplished

@ > o Fiet Words Difficult to Quantify

- Possible

- Better/higher/slower
- Generally/normally
- Earliest/latest/

highest

- Simultaneous
- Nominal/normal/

average

Cheryl Dorsey

Requirements Quiz

“The System shall as a goal, calculate
aircraft heading, altitude, and global
position to a sufficient accuracy.”

Is this acceptable -- Why or Why Not?

11

FAA National Software Conference

- All scenarios not identified and thought

- Engineers don’t specify areas they know

Software Verification

=\ " Didital Fliaht Problems Found in
@ Requirements Specifications

- Design details given too early
- Data flow inconsistent
- Desired outputs not derived from the given

inputs

through

tightly (assume others know it too)

- Engineers specify only generally, areas not

known or understood

- Usual ambiguities, errors of omission, etc.

Cheryl Dorsey

Requirements Summary

- Requirements are foundation for the
development

- Requirements specification is an art
even if you know what you want to
build

- Requirements review (scrub) is
important

- Most software errors are due to poorly .
specified requirements

12

FAA National Software Conference
Software Verification

Development Processes

[planning |
Reguirements

SW Design Description

— SW Architecture

— Low Level Requirements

— Derived Low Level

RELIIEIENS

Low-level Requirements - Software Architecture
Comply with systems requirements - Compatibility with high-level
Accurate and consistent requirements
Compatible with target - Compatible with target
Verifiable and traceable to high level - Verifiable and conforms to
Conform to standards standards

Algorithms accurate Partitioning integrity
confirmed

Slide 25

@ Example of Low Level Requirements

Description: The check__logic() function compares
commanded versus sensed states of the ACrvdtl,
Accrvdt3, Ervdt2 and the Bus Relay. When failures are
detected, this procedure sets failure bits in the ACR
failure array. The types of failures can be in either the
Logic card, the 101 (ACRVDT1, ERVDT2, ACCRVDT3
or Bus Relay) or a continuity failure.

Cheryl Dorsey

13

FAA National Software Conference

Software Verification

Example of Low Level Requirements
(Cont’d)

Detailed Requirements:

10.Determine if it is necessary to perform this test by determining
whether the processor is the active processor.

20.Perform this test for all 4 Logic Cards (ACrvdtl, Accrvdt3, Ervdt2
and the Bus Relay)

30.0btain the Auxiliary contact state, from memory, for the current
RVDT being evaluated.

40.Compare the RVDT’'s commanded and sensed states to
determine if a failure condition exists.

50.1f the comparison of 4. yields that there is a failure, signify the
failure, otherwise signify no failure.

60.Given a failure, for the current SLC being evaluated, determine
whether or not it is persistent.

70.1f a failure is determined to be persistent report the failure in
ARINC label 101.

Slide 27

Cheryl Dorsey

Architecture

Shows physical partitioning of the
system into components and flow of
data between them

Allocates functional processes to
physical units

Shows control flow (what process
activates another)

Slide
28

i

14

FAA National Software Conference
Software Verification

@ > Diata Fiart Architecture Specification

- Many different design methodologies
— Yourdan-DeMarco, Hatley-Pirbai
— Object Modeling Technique, etc.

- Variety of tools to model architectures

— Different methodologies stress different
models

— Same model (or variation) often found in
many methodologies

— Some models oriented more to
requirements modeling, other more to
design modeling

Looking for a
~ew_Good Design Models

- Structured
- Context Diagram
- Data Flow

. Control Flow

- State Diagram

- Object

Cheryl Dorsey

FAA National Software Conference
Software Verification

" Didital Flight Structure Chart for
Latest Cockpit Gizmo (LCG)

LCG
Main

I

Process Draw Output to
Input Display Recorder
Initialize Read Process Write
Buffer Packet Packet Packet

- Shows static relationships between
processing elements

m— ——— =

N

:
Rad
e P ecorce

', . LCG

Latest
F‘ Cockpit
i Keyboard — Gizmo
- ' ™y (Operator)
i
L

- Shows relationship between system
and outside world

A .
@ T m—— Context Diagram

Cheryl Dorsey

FAA National Software Conference
Software Verification

@ Data Flow Diagram (DFD)

11 1.2
Input —» Process Output to ey

.
Input \ /’ Recorde el
S VA

Current Data

Display

T Output

- Shows how data is transformed by
processes (usually conceptual)

Is successively decomposed

Overrun
Error >N

Operator
Selected Display~--~

- Shows control relationships between processes
- Usually superimposed on DFD

Slide 2.34

Cheryl Dorsey

17

FAA National Software Conference
Software Verification

@ State Diagram

Packet
Error

Packet
Process] ok

processing elements

Slide 2.35

|
Initialize
Buffer
)
- Shows dynamic relationships between

- ldentifies the physical components
and data in your system

- Views your system from a variety of
perspectives (models)

- Map-able to requirements and
internally consistent

Cheryl Dorsey

18

FAA National Software Conference
Software Verification

@) Diaital Flicht Design Summary

v : Design data consists of: | Types of Architecture Models
- Low-level - Data Flow

requirements - Object Oriented
- Derived low-level

. - State Diagram
requirements
. - Control
- Architecture

- Structured

States how the software works and is put
together not necessarily what it does! "

Requirements vs. Design . . .

“What” vs. “How”

- A High that is composed of several
lows

- Example is Air/Ground determination

Cheryl Dorsey

19

FAA National Software Conference
Software Verification

Development Processes

[planning |
Code/Integration

Source Code
Executable Object Code

Source code:
— Complies with low-level
requirements
— Complies with software architecture
— Is verifiable, traceable to low-levels
and in conformance with standards

‘ Slide — Is accurate and consistent
39

- Test cases and
procedures

Test results
Annex A Table A-6
Activities in 6.4
Objectives 6.4.2.1-2
6.4.3,6.4.3a
Output Data: 11.13,11.14

Slide
40

Cheryl Dorsey

FAA National Software Conference
Software Verification

@ > il Flioht Testing Of Outputs of
. Integration.Process—Table A-6.

. Objective
Objective Number

- Executable meets:
— High-level requirements
— Low-level requirements

- Executable is robust with:
— High-level requirements
— Low-level requirements

- Executable
— Compatible with target

P —— Avoiding
: Testing On The Target

Some target environments may not support
the invasive testing techniques (e.g., peeking
and poking) needed to determine if the
software meets the requirements.

Question:

Before an applicant uses an In Circuit
Emulator for verification:

- Must they qualify it (i.e. assure it works
correctly)?

. Do they have to re-run all the tests on the ®
target?

Cheryl Dorsey

FAA National Software Conference
Software Verification

(_ ") Dicital Flicht Avoiding
'\@) Testing On The Target (Cont’d)

Answer: No just rerun arepresentative
portion of the tests on the target
and assure the same results

DO-178B Test Objectives

- Software Testing should

— Verify software meets it’s
requirements

— ldentify with a degree of confidence
(commensurate with software level)
that if errors exist -- they have been
identified

- Coverage Analysis should determine
— What software requirements not tested
— What software code not tested

Cheryl Dorsey

22

FAA National Software Conference
Software Verification

_“\. Y Diaital Flioht DO-178B Test Process
() & Analysis Overview

-~

Software
Requirements Based
Test Generation

HW/SW SW Integration Low Level
Integration Tests Tests Requirements Tests
Incomplete

Requirements
ouerage Software
Requirements
Coverage Analysis
Incomplete

Code Complete Coverage
Coverage k4

% Additional
LELEEREEN Verification -(e.g.
Software Coverage
i Complete Coverage Based Test
Generation)

Test Implementation
--Developing the Tests

» Organization
 Planning
» Test

— Procedures
— Cases
b' » — Strategies to test or analyze requirements and
achieve desired cade coverage

e
=! o B B

Cheryl Dorsey

FAA National Software Conference
Software Verification

@ ") Dicital Flioht Test, Inspection, Analysis --
~/)_____AsARequirements Test Method
-~

: * Test

: —Set of inputs, expected results, actual
results

t * Inspection

| —Trivial requirements that can be

1" verified by just checking code
1™
L

. * Analysis
L —Non-testable requirements

Slide
a7

Test Cases

- Normal Range Tests

— Normal conditions and inputs

¢ In range inputs, normal events interrupts, normal
state transitions, normal logic processing

- Robustness Tests
— Abnormal conditions and inputs

¢ Out of range inputs, unexpected interrupts and
state transitions, exception handling, system
initialization

- Performance Tests/Analyses

Slide
48

Cheryl Dorsey

FAA National Software Conference
Software Verification

@ > piawFit Normal and Robust Testing

- Normal range test cases—how software
responds to normal inputs

— Valid input equivalence classes
— Performance related functions

— Algorithms (logic and arithmetic)
— State transitions

Robustness test cases—how software
responds to abnormal inputs

— Invalid input equivalence classes
— System initialization—abnormal conditions
— Out of range loop variants
— Provoke invalid state transitions

Test Case Levels

Low Level

Low

Low Level Requirements
LCS]

Unit/Module Testing

b
|
I
| High

y Hardware Software
Integration Tests

Intermediate
Software Integration Tests

Test Simulators

®3 ® =~ —c oo

Target Environment

by

Slide

50 High Level

. .

Cheryl Dorsey

FAA National Software Conference
Software Verification

2 + Diaital Fliaht COde Coverage
@ via High Level Testing

-~y Advantages

- — Tests software functional requirements
— More coverage per test
— More realistic, useful tests

& . Disadvantages

'. r\ Tests harder to setup
| Some classes of errors harder to target
i

Tests results require more analysis

L = Need tools to determine structural coverage

Harder to plan up front what coverage provided
Slide
i,

Code Coverage
via Low Level Testing

Advantages
Tests detailed (design) requirements
Tests can be done independently in parallel
Does not require expensive test equipment
Easier to target particular code areas

Disadvantages

— More testing required
— Only tests an isolated part of code
i _ — Tests can be contrived

Slide
52

Cheryl Dorsey

FAA National Software Conference
Software Verification

@. > Didtal Flicht g de Coverage Via Analysis

A

Advantages
— May be less expensive to setup

— Does not require tools or code
instrumentation

Disadvantages

— More labor intensive

[|
" . — Needs to be repeated each time code
" changes/tests rerun

— Can be less rigorous (error-prone and

—l .
. =—"F tedious process)

Slide

53 — few people do it right -- risk!!

Error Detection Objectives*

Low Level Testing Software Hardware/Software
Integration Testing Integration Tests

- Algorithm Failures - Incorrect Initialization of - Incorrect Interrupt Handling
- Incorrect Loop Operations VEUEGIES - Miss Timing Requirements
- Incorrect Logic Decisions - Parameter Passing Errors + Hardware Transient Errors
- Failure to Process Correct Input * (Global) Data Corruption - Resource Contention
Combinations - Inadequate Numerical - BIT Detection Errors
+ Incorrect Response to Bad Resolution - Bad Feedback Loops
Input Data *Incorrect Sequencing of - Incorrect Device Control
| - Incorrect Exception Handling Events and Operations - Stack Overflow
- Incorrect Computation - Incorrect Load Version
s h Sequence Verification
' - Inadequate Algorithm - Software Partitioning
i Precision, Accuracy, Violations
i Performance

g

Slide
54 *DO-178B 6.4.3

Cheryl Dorsey

FAA National Software Conference
Software Verification

@.') »* Diaital Flioht Test Summar
® y

The test process is non-trivial.

Analysis within the test context is
confusing since it can have several
meanings.

There are many strategies to testing,
decisions are made based on the type of
development.

You will see many different approaches to
achieve the same objectives and will be
required to assess them.

o

Four Annex Tables For Verification of
Development and Test Processes

Table A-2
I Table A-6

* High Level Regs

* Derived High Level
Reqs

« Verification
Results

Design Descr
* Architecture
*Low Level Regs ¢ Source Code]
« Derived Reqs » Executable Object * Test Cases and "
« Verification Code Procedures
Results « Verification Results * Test Results
« Verification Results

Cheryl Dorsey

FAA National Software Conference
Software Verification

@ »* Diaital Flioht Verification

N

. Definitions in DO-178B

- Verification—evaluation of the results of a
process to ensure correctness and consistency
', with respect to inputs and standards (Glossary)

‘ /‘ Verification:

1 - Analysis—repeatable assessment (par 6.3)

'-' . - Review—qualitative assessment of correctness
f (par 6.3)

- Test—process of exercising a system or
: system component to verify it satisfies specific
siide requirements and to detect errors (Glossary)

SW Requirements Data

— High Level
Requirements

— Derived requirements

Requirements
Verification
Annex A Table A-3
Objectives In 6.3.1a-g
Activities in 5.1.2
Data Description 11.9
Output Data in 11.14

Cheryl Dorsey

29

FAA National Software Conference
Software Verification

> Didital Flicht ~ Verification of Outputs Of Software
@ Requirements Process—Table A-3

N

Objective
Objective Number
High-level requirements:
— Comply with systems requirements .
— Accurate and consistent
Compatible with target
Verifiable

Conform to standards
Traceable to system

Algorithms accurate
Slide
59

SW Design Description
— SW Architecture
— Low Level
Requirements Design
— Derived Verification
Requirements Annex A Table A-4
Objectives In 6.3.2 a-g
6.3.3 a,b-f
Activities in 5.2.2
Data Description 11.10
Output Data 11.14

Cheryl Dorsey

30

FAA National Software Conference
Software Verification

Verification of Outputs of Software
Design Process—Table A-4

. Objective
Objective
Low-level requirements:
— Comply with high-level
Accurate and consistent
Compatible with target
Verifiable and traceable to high-level
Conform to standards
Algorithms accurate

Software Architecture

— Compatible with high-level

— Consistent

— Compatible with target

— Verifiable and conforms to standards
side — Partitioning integrity confirmed

Source Code

Executable

Code and Integration Object Code

Verification
Annex A Table A-5
Objectives In 6.3.4a-f

6.3.5
Activities in 5.3.2
Data Description 11.11,11.12
Output Data: 11.14

Cheryl Dorsey

FAA National Software Conference
Software Verification

" Didital Fliaht Verification of Outputs of
Coding and Integration—Table A5

Objective
Objective Number
- Source Code:
— Complies with low-level
— Complies with architecture 2
Verifiable and conforms to standards

Traceable to low-level

Accurate and consistent
Complete and correct

Test cases
Verification of Verification and
Annex A Table A-7 procedures
Objectives In: 6.3.6b-c, - Test results
6.4.4.1,6.44.2 a-c
Data Description ,11.14
Output Data: 11.14

Cheryl Dorsey

FAA National Software Conference
Software Verification

(_ ") Diital Fliht Analyses/Review Of Results
'\@ '_ of the Test Process (Table A-7)

-~
4 - Test cases and procedures correct (A-7
Objective 1)

* Results correct and discrepancies
explained (A-7 Objective 2)

» Test coverage achieved (A-7 Objective 3-8)

Is Test Coverage Achieved?

Look at the output of the test process and
« ¥ determine if:

* All high level requirements tested (A-7 Objective 3)
* All low-level requirements tested (A-7 Objective 4)
» Complete software structure is tested (A-7)
—MCDC Objective 5
— Decision Objective 6

— Statement Objective 7
» Software structure addresses data & control

coupling (A-7 Objective 8)

Slide
66

i

Cheryl Dorsey

FAA National Software Conference
Software Verification

2\ ™ Diaital Fliaht S_tructural
@ Coverage Requirements

- Assures software runs on computer at
least once

- Requirements-based testing not enough
for safety critical software

- Finds unintended functionality,
untested functionality, and dead code

- Assures minimal set of combinations
tested

- Addresses issues associated with
negative logic (DeMorgans theorem)

e— Structural
Covera Requirements (Cont'd)

: What's required:
- Level D—not required

- Level C—statement coverage
(every line of code is executed)

- Level B—decision coverage
(path coverage of the software)

- Level A—modified condition decision
coverage (combinations and Boolean "
coverage)

Cheryl Dorsey

FAA National Software Conference
Software Verification

What is Structural Coverage?

| Requirements Based Test Case 1 Requirements Based Test Case 2

Resulting Structural Coverage Resulting Structural Coverage

\iouiasE Level A Modified
_ Condition_Decision_Coverage.

.:
1 If(AorB)and C

All combinations for 3 variables =8

MCDC—minimum of n+1 test cases

Make A or B both true and false

Simultaneously make the
expression true and false

Cheryl Dorsey

FAA National Software Conference
Software Verification

e\ ") Didital Fliaht - LevelB--
@ Decision Coverage

: Decision Coverage

if (WOW and wheel speed < 80 knots)
b» » on-ground
" else
i air

|"\‘ endif
L]

Need to hit both logic paths

- Assures all logic paths are taken for the right '
reason

Level C --
Statement Coverage

Statement Coverage
Every line of code must be executed!
- Finds dead code

- Assures that all code has run on target
at least once

Cheryl Dorsey

36

FAA National Software Conference
Software Verification

" Diaital Fliaht WHEIRES
' Structural Coverage Analysis?

Determining if the Test Cover age of
the Software Structureis Achieved!

Resulting Structural Coverage

Potential Causes For
Missing Structural Coverage

* Dead code

* Missing
requirements

* Unintended
functionality

* Poor testing

Cheryl Dorsey

37

FAA National Software Conference
Software Verification

@) Diaital Flicht Dead Code

-~
v . Code that can not be executed due to
the way it is coded.

Example:

if (A and B) and not C
compute height

if C

|j compute weight
end if

nd if

Test Coverage of the
Data and Control Coupling

Assure test process has tested the data
and control aspects of the software

Data Coupling Control Coupling

- Interfaces - Calling tree

- Typing - Timing of events

- Global usage - Scheduler/transition

- Interrupts

Cheryl Dorsey

FAA National Software Conference
Software Verification

@ ") Didital Flicht MCDC Analysis

- Single Term IF Statements

— MCDC ensures both branches of the IF
executed

- Multiple Term IF Statements

— MCDC Analysis required if -- IF
statement has 2 or more logic terms

Note: There are other logic statements .
besides IF in many languages, e.g. -
DO WHILE

IF Statement Coverage

- Does the following require 1 or 2 test
cases for full coverage?

If (A==0)
X = 1;

X =X + 1;

Cheryl Dorsey

39

FAA National Software Conference
Software Verification

() ") Didital Fliaht IF Statement Coverage

J‘ - It can require 2, depending on how the compiler
implements IF statements, e.g.

CASE 1(A=0) CASE 2(A=1)
If (A==0)

X = 1; L1 ST X1

X X + 1;

- To be safe, always test both sides of the IF

MCDC and Logic Terms

Logic Term Rules

— any term with two operands and an operator
which evaluates to TRUE or FALSE

} X — second operand can be implicit (e.g. !Ais
equivalent to A ==0)

,P — logic terms are typically combined together

'r\ via ANDs, ORed, or other logical operators
i

i

— a variable which is ANDed or ORed with a
constant is not a logic term, it is really a
v variable (it evaluates to a value, not T or F)

Slide
80

Cheryl Dorsey

FAA National Software Conference

Slide
81

How many Logic Terms?
Is MCDC Coverage Analysis Required?

if (alarmhist [k] >0)

if ((state [i] & MASK) != OxA)

if (tenp & BIT12 + BIT15)

if ((status [i] == HGH) && ((states & 4)

if (1GIO && !wowl && !wow2)

Software Verification

@ "> Diital Flicht

MCDC Example

=0))

if ((!GLO && ('wowl && !'wow2)) || (!wowl || !wow2))

by

Cheryl Dorsey

Slide
82

e Provided an

understanding of how
the annexes work
together

- Verification is an

important part of DO-
178B not found in many
other standards

DO-178B is no silver
bullet--verification is
only as good as the
verifier no matter which
standard you use

Summary

Verification

41

