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Briefing 
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Applications
Discussion
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Induced Positron Annihilation
Unique Capabilities

Atomic level, microstructural diagnostics
Near-surface material characterization
Multi-layer, thick structure damage detection
Detects multiple damage mechanisms
Service life remaining determination

Works in variety of materials
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Advanced 
Measurement Capability
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Positron Systems’
Technologies

Photon Induced Positron Annihilation (PIPA)
Larger equipment, faster volumetric (bulk) analysis
Mobile capability 

Distributed Source Positron Annihilation (DSPA)
Small size, near-surface analysis, can be configured 
as a probe
Mobile capability

Neutron Induced Positron Annihilation (NIPA)
In development
Smaller than PIPA, highly portable, bulk analysis
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Photon/Neutron Induced 
Positron Annihilation 
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Positron Life CycleTM
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Damage to Peak 
Shape Relationship
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Doppler Broadened
S Parameter Analysis 

Counts within the 511 keV gamma ray energy level are 
compared against total counts
The line-shape parameter, “S” is indicative of damage levels
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Positron 
Trapping Defects

Defect Type Size Materials

Atomic

Vacancies
0.1 nm Metals

Dislocations 1 nm - 10 µm Metals

Voids 0.1 nm - 1 µm Metals

Holes 0.1 nm - 10 µm Polymers Stress Crack Tip

Defects range from single- atom vacancies through 
macroscopic voids and holes.
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Key Principles of 
PIPA Summary

Highly Sensitive Probe—Positive charge causes positrons to 
be repelled by protons, probing 105 lattice sites

Trapped at Defects—Attractive potential exists at open-
volume defects because there are less positive charged nuclei

Conservation of Momentum—higher ratio of low momentum 
free electrons causes a unique annihilation energy (5ll keV) 
at defects (Doppler broadened analysis) 

Longer Life—Lower atomic (electron) density in defect areas 
mean the positrons live longer—defect sizes and types

Composition/impurities—Differences encountered in atomic 
structure provide different annihilation “characteristics”
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Mobile PIPA 
System Concept
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Developmental
NIPA System
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Remaining Life
Assessment
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Multi-Layer
Crack Detection 
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Initial Multi-Layer
Crack Response
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Taper-Lok Hole
Damage Detection
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Wing Attach Fitting 
Damage Assessment
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WAF Damage with
Operational History

Operational Hours 
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Nickel-Based Superalloy
Thermal Treatment Analysis
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Titanium Fatigue
HAI Specimens
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Low Cycle Fatigue 
DSPA Analysis 
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Test Coupons
Fatigue Cycles
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High Cycle Fatigue
DSPA Analysis

7475-T3751 AL
Test CouponsFatigue Cycles
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Sandia Surface 
Skin Analysis

Initial measurements inconclusive on 
large area specimens with surface 
damage
Typical range .0020 - Initial reduction 
from as manufactured complicates blind 
sample studies
Much broader dynamic range for lap 
splice measurements
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Sandia Lap Splice Analysis  
Significant Differences

Lap Splice Measurements
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Cessna Coupon Initial 
Feasibility Demonstration
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Positron Systems’ 
Solution

Portable equipment in development
Maintenance hanger configuration

Validate initial findings with further testing
Develop inspection criteria and sufficient 
database with statistical uncertainties for 
pass/fail and remaining life estimates
Certify inspection process
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NDE, Life Prediction, Failure Analysis
Early damage detection—”From Day One”
“Cradle to Grave” system health management
Field portable
In-situ, thick, multilayer damage detection
Minimize disassembly/coating removal
Multiple damage mechanism detection capability
Works in metals, polymers, ceramics, composites



29

TM
Test & Analysis Center

Idaho Accelerator Center Expansion

Positron Systems

Confidential
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Questions?
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